
Object-Oriented Programming with Recursive Queries

Tomasz Pieciukiewicz1, Krzysztof Stencel2, Kazimierz Subieta1,3

1 Polish-Japanese Institute of Information Technology, Warsaw, Poland
{pietia, subieta}@pjwstk.edu.pl

2 Institute of Informatics, Warsaw University, Warsaw, Poland
stencel@mimuw.edu.pl

3Institute of Computer Science PAS, Warsaw, Poland

Abstract. Recursive queries are required in many object-oriented database ap-
plications. Among them we can mention Bill-Of-Material (BOM), various kinds
of networks (transportation, telecommunication, etc.), processing semi-
structured data (XML, RDF), and so on. The support for recursive queries in
current query languages is limited and lacks theoretical foundations. In this pa-
per we present recursive query processing capabilities for object-oriented envi-
ronments. They are part of Stack-Based Query Language (SBQL). SBQL offers
powerful and flexible recursive querying capabilities due to the fact that recur-
sive processing operators are fully orthogonal to other features of this language.
This paper discusses corresponding SBQL constructs: variants of transitive clo-
sures, fixed point equations and recursive procedures/views. The paper is aug-
mented by discussion concerning the state-of-the-art of current recursive query-
ing capabilities.

1 Introduction

Recursion in traditional programming languages like C or Java is natural and obvious
for all the programmers. Database programmers and users, however, usually do not
have the possibility of utilizing recursion, despite frequent needs to use it in database
applications. The most widely known task requiring recursive processing is Bill-Of-
Material (BOM), which is a part of Materials Requirements Planning (MRP) systems.
BOM acts on a recursive data structure representing a hierarchy of parts and subparts
of some complex material products. Typical MRP software processes such structures
by proprietary routines and applications implemented in a traditional programming
language. However, users frequently need to issue ad hoc queries addressing such
structures. In such cases they need special recursive user-friendly facilities of a query
language. Similar problems concern computations on genealogic trees, stock market
dependencies, various types of networks (transportation, telecommunication, electric-
ity, gas, water, and so on), processing metadata such as CORBA Interface Repository,
etc.

In traditional programming languages in many cases recursion can be substituted by
iteration. This, however, implies much lower abstraction level and less elegant prob-
lem specification. The iteration may also cause higher cost of program maintenance,

since it implies a clumsy code, more difficult to debug and change. Sometimes itera-
tion instead of recursion is motivated by attempts to achieve higher performance,
although nowadays, due to very high speed of computers, the performance gain is very
rarely worth extra maintenance cost. Another motivation for changing recursion into
iteration is the limit on the size of the stack, but for current sizes of memories (ex-
tended by virtual memories) this limit is not critical for majority of recursive tasks.
Database programmers cannot use iteration in a query language, since it is available
only within a host programming language embedding or integrating the query lan-
guage.

Despite importance, recursion is not supported in SQL standards (SQL-89 and
SQL-92). Beyond the standards, it is implemented (differently) in relational database
management systems, in particular, in Oracle and DB2, in the form of transitive clo-
sures. Newer SQL standards SQL-99 (aka SQL-3) and SQL 2003 introduce both tran-
sitive closure and deductive rules a la Datalog. Unfortunately these standards are very
huge and eclectic, thus many database professionals doubt if they will ever be fully
implemented. The ODMG standard for object-oriented databases and its query lan-
guage OQL do not mention any corresponding facilities. The recursion is considered a
desirable feature of XML-oriented and RDF-oriented query languages, but current
proposals and implementations do not introduce corresponding features or introduce
them with many limitations.

The possibility of recursive processing has been highlighted in the field of deduc-
tive databases, notably Datalog. The paradigm has roots in logic programming and has
several variants. Some time ago it was advocated as a true successor of relational
databases, as an opposition to the emerging wave of object-oriented databases. De-
spite high hype and pressure of academic communities it seems that Datalog falls short
of the software engineering perspective. It has several recognized disadvantages, in
particular: flat structure of programs, limited data structures to be processed, no pow-
erful programming abstraction capabilities, impedance mismatch during conceptual
modeling of applications, poor integration with typical software environment (e.g.
class/procedure libraries) and poor performance. Thus practical mission-critical Data-
log applications are till now unknown. Nevertheless, the idea of Datalog semantics
based on fixpoint equations seems to be very attractive to formulate complex recursive
tasks. Note however that fixpoint equations can be added not only to languages based
on logic programming, but also to any query language, including SQL, OQL and
XQuery.

Besides transitive closures and fixpoint equations there are classical facilities for
recursive processing known from programming languages, namely recursive functions
(procedures, methods). In the database domain a similar concept is known as recursive
views. Integration of recursive functions or recursive views with a query language
requires generalizations beyond the solutions known from typical programming lan-
guages or databases. First, functions have to be prepared to return bulk types which a
corresponding query language deals with, i.e. a function output should be compatible
with the output of queries. Second, both functions and views should have parameters,
which could be bulk types compatible with outputs of queries. Currently very few
existing query languages have such possibilities, thus using recursive functions or
views in a query language is practically unexplored.

This paper discusses three different approaches to recursive querying:

• transitive closure operators,
• least fixed point equation systems (fixpoint equations, for short),
• recursive procedures and views.

In this paper we describe all three approaches to recursive processing within a uni-
fied framework: the Stack Based Approach (SBA) to object-oriented query languages
[1, 2, 3]. SBA treats a query language as a kind of programming languages and there-
fore, queries are evaluated using mechanisms which are common in programming
languages. SBA introduces an own query language Stack-Based Query Language
(SBQL) based on abstract, compositional syntax and formal operational semantics.
Within this approach all three approaches can be implemented. Currently we have
implemented several variants of transitive closure operators and recursive proce-
dures/views. Implementation of fixpoint equations is advanced in the currently devel-
oped object-oriented database platform ODRA. In this paper we compare the ap-
proaches on sufficiently complex examples showing their strengths and weakness with
respect to problems from database application programming.

The rest of the paper is organized as follows. Section 2 presents the Stack-Based
Approach and its query language SBQL. Section 3 is devoted to the transitive closure
in SBQL. Section 4 describes fixpoint equations in SBQL. Section 5 deals with recur-
sive procedures and views. Section 6 discusses the future work on optimization. Sec-
tion 7 presents a short overview of the current state of the art in recursive queries.
Section 8 concludes.

2 Stack Based Approach and Stack Based Query Language

The Stack-Based Approach (SBA) [1, 2, 3] is a consistent approach to theory and
construction of query languages for various data models. It is an attempt to discipline
the current creative chaos in the domain on the ground of a homogeneous and univer-
sal theory. In SBA a query language is considered a kind of a programming language.
Thus, the semantics of queries is based on concepts well known from programming
languages like the environmental stack (thus the name of the approach) and the nam-
ing-scoping-binding principle. SBA extends the stack mechanism for the case of query
operators, such as selection, projection/navigation, join, quantifiers, transitive closures
and others. Using SBA one is able to determine precisely the operational semantics
(abstract implementation) of query languages, including relationships with object-
oriented concepts, embedding queries into imperative constructs, and embedding
queries into programming abstractions: procedures, functional procedures, views,
methods, modules, etc.

The stack-based approach is a theory of query languages that is independent of a
specific data model. It can be applied to relational, object-oriented, object-relational
databases, and to XML repositories. SBA introduces the query language SBQL
(Stack-Based Query Language), which has abstract syntax and rigorous, clean formal
semantics. SBQL is incomparably more powerful than ODMG OQL and W3C XML

query languages such as XQuery. SBQL, together with imperative extensions and
abstractions, has the computational power of programming languages, similarly to
Oracle PL/SQL or SQL-99/SQL-2003 standards. Due to object relativism, full or-
thogonality and compositionality, and other qualities, the specification of SBQL has
some 100 pages, i.e. it is more than 20 times shorter than the specification of SQL-99.

SBA and SBQL can also be considered a theoretical frame in the spirit of the re-
lational algebra and relational calculus known from the relational model and their
object-oriented counterparts, such as object algebras and F-logic. In comparison,
however, SBQL offers much wider conceptual basis concerning both data structures to
be queried and query operators. Clean, rigorous semantics of SBQL, supporting the
principle of object relativism and full orthogonality of SBQL operators create a big
potential for query optimization and for strong static type checking of SBQL queries
and programs integrated with SBQL queries.

SBA and SBQL have already several implementations, in particular, within the
prototype of object-oriented DBMS LOQIS, for the European project ICONS (Intelli-
gent CONtent management System), as a query language supporting the workflow
definition language XPDL, for the object-oriented DBMS Objectivity/DB, and re-
cently for a new prototype ODRA (Object Database for Rapid Application develop-
ment) aiming at Web content management and grid technologies developed for the
.NET environment.

2.1 Data Store Models

Any approach to formalization of query languages must be preceded by formalization
of data structures to be queried. Object-oriented data models are complex and intro-
duce a lot of notions. The question how to formalize them is not trivial, because the
formalization must be simple formally and simultaneously must cover (at least poten-
tially) all critical concepts of object databases. A trade-off is presented in [1, 2, 3] and
other papers devoted to SBA. To eliminate secondary features of data structures we
assume a unification of records, tuples, arrays and all bulk structures. In our models
we abstract from their differences. Similarly, we unify many other concepts related to
database models and object-orientedness without sacrificing their conceptual qualities.

In the Stack Based Approach four data store models are defined, with increasing
functionality and complexity. The M0 model described in [2] is the simplest data store
model. In M0 objects can be nested (with no limitations on nesting levels) and can be
connected with other objects by links. M0 covers relational and XML-oriented struc-
tures. It can be easily extended to comply with more complex models which include
classes and static inheritance (M1), dynamic object roles and dynamic inheritance
(M2), encapsulation (M3) and other features of object-oriented databases.

In SBA an object has the following properties: internal object identifier (OID)
which cannot be used in queries nor printed, external name, which is used in the ap-
plication code to access objects, and object content which can be a value, a link, or a
set of objects. An SBA store consists of the structure of such objects/subobjects and
the set of identifiers of root objects, i.e., starting points for queries.

In the M1 model a class is a special kind of an object stored in the database. It is a
complex object which contains invariants of all objects of this class. These invariants
include codes of methods, default values of attributes, the common name for all ob-
jects of the class. Two important relations are stored in the database. The first one is
the memberships relation which connects objects to classes. The second one is the
inheritance relation which connects classes to classes.

2.2 Name Binding and Environment Stack

SBA is based on the programming languages’ naming-scoping-binding principle. Each
name occurring in a query/program is bound to a proper run-time database/program
entity according to the name scope. Scopes for names are managed by means of the
Environment Stack (ES). ES consists of sections which contain entities called binders.
Binders relate names with run-time objects and are used during binding names. A
binder is a pair (n, v), written as n(v), where n is an external name used in queries and
v is a value (most often it is an object identifier).

New sections on ES are built by means of a special function nested which returns
binders to the content of an object (in case of complex objects) or (in case of link
objects) a binder to the pointed object.

Binding name n occurring in a query is an action of the query interpreter which
searches ES for the binder named n which is closest to the top of ES. Binding respects
static scoping rules which mean that some sections of ES are invisible during the bind-
ing (e.g. sections related to local environments of procedures). The name binding can
return multiple binders and this way we handle collections of objects.

The M1 model requires a slight modification of the binding mechanism so that the
substitutability principle is obeyed. Whenever the being bound name m is the name of
objects of a class c, the binding returns all the objects named m but also all the objects
of the subclasses of the class c. Full description of the binding mechanism in M1 can
be found in [3].

2.3 Stack-Based Query Language (SBQL)

Stack-Based Query Language [2, 3] is based on the principle of compositionality, i.e.
semantics of a complex query is recursively built from semantics of its components.
SBQL queries are defined as follows:

1. A name or a literal is a query; e.g., 2, “Niklaus Wirth”, Book, author.
2. σ q, where σ is a unary operator and q is a query, is a query; e.g., count(Book),

cos(x).
3. q1 τ q2, where τ is a binary operator, is a query; e.g., 2+2, Book.title,

Customer where (name = ”Smith”).

In SBQL each binary operator is either algebraic or non-algebraic. If ∆ is an alge-
braic operator, then in the query q1 ∆ q2 the order of evaluation of queries q1 and q2 is
inessential. Queries are evaluated independently and their results are combined into

the final result depending on ∆. Examples of algebraic operators are numerical and
string operators and comparisons, aggregate functions, union, and others.

Non-algebraic operators are the core of the SBA. In a query q1 θ q2 with a non-
algebraic operator θ the second subquery is evaluated in context determined by the
first subquery. Thus the order of evaluation of queries q1 and q2 is significant. Query
q1 θ q2 is evaluated as follows. First q1 is evaluated. Then q2 is evaluated for each
element r of the result returned by q1. Before each such evaluation ES is augmented
with a new scope determined by nested(r). After evaluation the stack is popped to the
previous state. A partial result of the evaluation is a combination of r and the result
returned by q2 for this value. The method of the combination depends on θ. Eventu-
ally, these partial results are merged into the final result depending on the semantics of
operator θ. Examples of non-algebraic operators are selection (where), projec-
tion/navigation (the dot), dependent join, quantifiers (∃, ∀), sorting (order by), and
transitive closures.

3 Transitive Closures in SBQL

A transitive closure in SBQL is a non-algebraic operator having the following syntax:

q1 close by q2

Both q1 and q2 are queries. The query is evaluated as follows. Let final_result be the
final result of the query and ∪ the bag union. Below we present the pseudo-code ac-
complishing abstract implementation of q1 close by q2:

final_result := result_of (q1);
for each r ∈ final_result do:

push nested(r) at top of ENVS.
final_result := final_result ∪ result_of (q2);
pop ENVS;

Note that each element r added to final_result by q2 is subsequently processed by
the for each command. The above operational semantic can be described in the deno-
tational setting as the least fixed point equation (started from final_result = ∅ and
continued till fixpoint):

final_result = q1 ∪ final_result.q2

where dot is identical with the dot operator in SBQL. Similarly, the semantics can be
expressed by iteration (continued till result_of (q2) = ∅):

final_result = q1 ∪ q1.q2 ∪ q1.q2.q2 ∪ q1.q2.q2.q2 ∪

Naive implementation of the close by operator is as easy as the implementation of
the dot operator. Note that if q2 returns a previously processed element, an infinite
loop will occur. Checking for such situations in queries is sometimes troublesome and

may introduce unnecessary complexity into the queries. Another operator distinct
close by has been introduced to avoid infinite loops due to duplicates returned by q2.

As q1 and q2 can be any queries, simple or complex, the relation between elements
which is used for transitive closure is calculated on the fly during the query evalua-
tion; thus the relation needs not to be explicitly stored in the database.

Fig. 1. A sample data schema

Fig.1 depicts a simple data schema used in our examples. It is a description of
parts, similar to descriptions used in Bill of Material (BOM) applications. Each Part
has a name. The part may be either a Detail or Aggregate. Each detail has attributes
Cost and Mass (its cost and mass). Each Aggregate has attributes assemblyCost and
assemblyMass which represent the cost of assembling this aggregate and mass added
to the mass of its components as the result of the assembly process. Aggregates have
one or more Component subobjects. Each Component has the attribute amount (num-
ber of components of specific type in a part), and a pointer object leadsTo with one-
direction navigation to Parts.

The following SBQL query with a transitive closure over this schema finds all
components of a part named “engine”.

(Part where name = ”engine”) close by (Component.leadsTo.Part)

This query first selects parts having the attribute name equal to “engine”. The transi-
tive closure relation is described by the subquery (Component.leadsTo.Part). It re-
turns all Part objects which can be reached by the pointer leadsTo from already se-
lected objects.

This query takes advantage of an assumption made in the M1 model. After reaching
an object by its name all its attributes are accessible, not only those of the class whose
name has been used to retrieve the object. The assumption allows us to simplify que-
ries by removing the necessity to use cast operators. If an object does not have the
queried attribute (because it belongs to a subclass which does not have this attribute or
the attribute is optional), the empty collection is returned as the result of binding the
name of this attribute. In this query, the subquery (Component.leadsTo.Part) is evalu-

Part
name

Component
amount

Detail
Cost
Mass

Aggregate
assemlyCost
assemblyMass

linksTo

*

ated for Part objects which can be either Details or Aggregates. In case of an Aggre-
gate, the name Component is properly bound and returns the collection of the Compo-
nent subobjects. In case of Detail, the name Component cannot be bound and returns
the empty set.

One of the basic BOM problems, i.e. “find all components of a specific part, along
with their amount required to make this part”, may be formulated using the transitive
closure as follows:

((Part where name=”engine”), (1 as howMany))
close by (Component.((leadsTo.Part), (howMany*amount) as howMany))

The query uses a named value in order to calculate the number of components. The
number of parts the user wants to assemble (in this case 1) is named howMany and
paired with the found part. In subsequent iterations the howMany value from parent
object is used to calculate the required amount of child elements. It is also named
howMany and paired with the child object.

The above query does not sum up amounts of identical sub-parts from different
branches of the BOM tree. Below we present a modified query which returns aggre-
gated data – sums of distinct components from all branches of the BOM tree:

((((Part where name=”engine”) as x, (1 as howMany))
close by (Component.((leadsTo.Part) as x, (howMany*amount) as howMany))

) group as allEngineParts
).
((distinct(allEngineParts.x) as y).(y, sum((allEngineParts where x=y).howMany)))

This query uses grouping in order to divide the problem into two parts. First, all the
components named x, along with their amounts named howMany are found. The pairs
are then grouped and named allEngineParts. The grouped pairs are further processed,
by finding all distinct elements and summing the amounts for each distinct element.

This query could be further refined, in order to remove all aggregate parts (so only
the detail parts will be returned). There are many ways to accomplish this goal. On of
them is to use the operator leaves by in place of close by. The operator leaves by
returns only leaf objects, i.e. objects which do not result in adding any further objects
to the result set:

((((Part where name=”engine”) as x, (1 as howMany))
 leaves by(Component.((leadsTo.Part) as x, (howMany*amount) as howMany))

) group as allEngineDet
).
((distinct(allEngineDet.x) as y).(y, sum((allEngineDet where x=y).howMany)))

The other way to sort the aggregates out of the result of the previous query is to use a
cast. The cast operator takes a collection of objects and returns only these items of it
which belong to the given class. The cast applied to a single object returns this object
if it belongs to the class; otherwise it returns the empty set. Here is a query with the
same retrieval goal but written using a cast.

(((Detail)
 (

((Part where name=”engine”) as x, (1 as howMany))
close by (Component.((leadsTo.Part) as x, (howMany*amount) as howMany))

)
) group as allEngineDet

).
((distinct(allEngineDet.x) as y).(y, sum((allEngineDet where x=y).howMany)))

Here the result of the subquery whose result is further named allEngineDet is first cast
to the class Detail. This cast drops all objects which do not belong to this class.

Such rather typical BOM tasks cannot be formulated in any variant of SQL as a
single query. Although the complexity of the SBQL solution is still high, SBQL sup-
ports facilities to manage the complexity. In this case the grouping operator allows us
to decompose the problem into easier subproblems.

SBQL queries may be used to perform even more complex tasks. The query below
calculates the cost and mass of the part named “engine”, taking into account cost and
mass of each engine part, amount of engine parts and cost and mass increment con-
nected with assembly. This task has been used in [4] as an example of lack of power
and flexibility of currently used query languages. In SBQL the task can be formulated
with no essential problems:

((((Part where name=”engine”) as x, (1 as howMany))
close by Component.((leadsTo.Part) as x, (amount*howMany) as howMany)

) group as allEngineParts
).
(allEngineParts.((Detail) x as d).

((howMany * d.Cost) as c, (howMany * d.Mass) as m)
group as CostMassIncreaseD,

 allEngineParts.((Aggregate) x as a).
((howMany * a. assemblyCost) as c, (howMany * a. assemblyMass) as m)

group as CostMassIncreaseA
).
((sum(CostMassIncreaseD.c)+ sum(CostMassIncreaseA.c)) as engineCost,

(sum(CostMassIncreaseD.m)+ sum(CostMassIncreaseA.m)) as engineMass)

Due to the orthogonality (including orthogonal persistence) SBQL can perform cal-
culations without referring to the database; e.g. 2+2 is a regular query. It is impossible
in some SQL variants. As an example of the SBQL power, the query below calculates
approximation of the square root of a, using the fixpoint equation x = (a/x + x)/2.

((1 as x, 1 as counter)
close by (((a/x + x)/2 as x, counter +1 as counter) where counter ≤ 5)

).(x where counter = 5)

Cycles in the queried graph can be easily dealt with by means of another variant of
the close by operator – close unique by. This variant removes duplicates after each
closure iteration, thus cycles do not imply infinite loops. Another variant of the close

by operator is the leaves unique by operator. It is a combination of the two previous
variants. It returns only leaf objects, while preventing problems with cycles in graphs.

We note that cycles in the queried graph do not have to be an effect of database in-
consistency. It is easy to imagine a database, which contains a graph with cycles that is
consistent with the real world situation, Fig.2.

Fig. 2. A sample structure for the examples of an application of close unique by

A Company has name and may own shares in other Companies (in this example we
abstract from the amount of shares). Other companies in turn may own shares in fur-
ther companies; and so on. It is possible for a company (lets call it “ACME”) to own
shares in another company which in turn owns shares in “ACME” (directly or by own-
ing shares in other companies). This creates cycles in the graph. To find the names of
all companies owned (directly or indirectly) by “ACME” we cannot use a simple
query using the close by operator as it would not function correctly upon encountering
the cycle. We can use the close unique by operator instead, as shown in the example
below:

(Company where name = ”ACME”) close unique by (hasSharesIn.Company)

The SBQL transitive closure operator is orthogonal to other operators of the lan-
guage, it is very universal and well suited for querying. However, as shown above,
some advanced tasks may lead to very complex queries which semantics could be
difficult to grasp for the programmers. Such complex problems may be solved by
means of other recursive querying techniques which support easier problem decompo-
sition.

4 Fixpoint Systems in SBQL

SBQL provides querying capabilities similar to those of Datalog. The currently pro-
posed solution is based on fixpoint systems, i.e. queries of the form x = q(x), where x
is a variable, q is an arbitrary SBQL query dependent on x. A system of such equa-
tions can have arbitrary number of variables. Such fixpoint systems in comparison to
Datalog seem to have essential differences, in particular the following:

• Datalog is used to deduce facts, using other facts and rules. SBQL fixpoint sys-
tems are used to find objects or (complex) values which satisfy some conditions.

• Datalog is based on logic, thus in some authors expect that it would be possible
to prove mathematically some properties of a Datalog program and its results.

*

hasSharesIn

isOwnedBy

*

Company
name

SBQL theoretical foundations lie elsewhere, and the possibility of proving any-
thing is not among the concerns of the SBQL design.

• The equations in SBQL fixpoint systems (which can be thought of as equivalent
to Datalog rules) may use any valid SBQL query;

• SBQL puts no constraints on the negation operator and assumes neither stratifi-
cation nor CWA. However, negation is not the only operation which may result
in a query causing an infinite loop; for instance, another such operator is func-
tion sinus or arithmetic minus. SBQL assumes that the programmer takes ap-
propriate care and such cases can be detected by testing.

In our opinion these differences concern mainly some specific rhetoric, ideological
assumptions, terminology, and superficial notions. From the pragmatic point of view
SBQL fixpoint systems are syntactically very similar to Datalog programs. Moreover,
they can be used in the same situations and can solve the same tasks. For these reasons
we consider SBQL fixpoint systems as a direct counterpart of Datalog programs. Tak-
ing in account all options, SBQL has the power of universal programming languages
thus is incomparably more powerful than Datalog.

The syntax of an SBQL fixpoint system is as follows:

fixpoint(xi1, xi2,…, xin) {x1 :- q1; x2 :- q2;… xm :- qm;}

where:

• x1, x2,…, xm are names of variables in this equation system,
• xi1, xi2,…, xin are returned variables, {xi1, xi2,…, xin} ⊆ {x1, x2,…, xm},
• q1, q2,…, qm are SBQL queries with free variables x1, x2,…, xm;

The semantics of this language construct is the following:

1. Variables x1, x2,…, xm are initialized to empty bags.
2. Queries q1, q2,…, qm are evaluated.
3. If the results of q1, q2,…, qm are equal to the values of x1, x2,…, xm, then stop

(the fixpoint is reached). Otherwise assign the results of q1, q2,…, qm to the val-
ues of x1, x2,…, xm and go to step 2.

4. The values of xi1, xi2,…, xin are returned as the result of the fixpoint query.

As queries q1, q2,…, qm can reference variables x1, x2,…, xm, the fixpoint system pro-
vides recursive capabilities.

The simplest use of a fixpoint system in a query is the calculation of transitive clo-
sure. The query below uses a fixpoint system to find all subcomponents of the part
named “engine” (the query addresses the schema shown in Fig.1):

fixpoint (parts){
parts :- (Part where name=”engine”) union (parts.Component.leadsTo.Part);

}

Fixpoint systems are regular SBQL queries, and as such may be used as parts of
other SBQL queries. The query below uses a fixpoint system as a part of a SBQL
query, in order to find names of all unique engine elements:

distinct(fixpoint (parts){
parts :- (Part where name=”engine”) union (parts.Component.leadsTo.Part);

}).parts.name

A fixpoint system may use some variables as a way to break down the problem into
smaller, more manageable parts. The query below does that in order to calculate the
number of different parts in the part named “engine”:

fixpoint (final) {
engine :- ((Part where name=”engine”) as x, 1 as howMany);
engineParts :- engine union engineParts.Component.

((leadsTo.Part) as x, (amount*howMany) as howMany);
final :- (distinct(engineParts.x) as y).(y, sum(engineParts where x=y).howMany);

}

Only variable final is returned as the fixpoint result. The other two variables are used
only to perform calculations, as their final values are inessential to the user. Variable
engine is used to find the top element of the hierarchy (the “engine” part), while engi-
neParts is the variable in which the results of recursive calculations are stored. Vari-
ables final and engine do not participate in the recursion.

The same principle is used in the next example. The query calculates the total cost
and mass of the engine:

fixpoint (cost, mass){
engine :- ((Part where name=”engine”) as x, 1 as howMany);
engineParts :- engine union engineParts.Component.((leadsTo.Part) as x,

(amount*howMany) as howMany);

engineDetails :- engineParts.((Detail) x as d, howMany as howMany);
engineAggregates :- engineParts.((Aggregate) x as a, howMany as howMany);

detailsMass :- sum((engineDetails.(howMany*d.Mass));
detailsCost :- sum((engineDetails.(howMany*d.Cost));
addedMass :- sum((engineAggregates.(howMany*a.assemblyMass));
addedCost:- sum((engineAggregates.(howMany*a.assemblyCost));

cost :- detailsCost + addedCost;
mass :- detailsMass + addedMass;

}

Fixpoints, unlike transitive closures, are capable of evaluating more than one recur-
sive problem in each step, in a manner similar to the Datalog. This topic may be an
interesting area for further research, although most of the practical recursive problems
we are aware of can be solved using only a single recursion.

Similarly to transitive closures, fixpoint systems may be used to perform recursive
calculations without referring to the database. The example below shows a fixpoint
system version of example calculating the square root of a:

fixpoint(x){
y :- (1 as r, 1 as c) union (y.(a/r + r)/2 as r, c+1 as c) where c ≤ 5;
x :- (y where c = 5).r;

}

Fixpoint systems in SBQL fit well with the rest of the language. As they are based
on a powerful and flexible approach, they are free from many drawbacks of Datalog,
such as difficulty with complex objects, no inheritance, associations, methods, etc.
When compared with transitive closures, fixpoint systems seem to be more readable,
as decomposition of the problem is easier.

5 Recursive Procedures and Views in SBQL

SBQL philosophy allows for seamless integration of imperative language constructs
with query operators, including recursive procedures and functions. This allows utiliz-
ing the most popular recursive processing technique, without sacrificing any of the
benefits of query language. In contrast to popular programming languages the new
quality of SBQL concerns types of parameters and types of functions output. The
basic assumption is that parameters are any SBQL queries and the output from func-
tional procedures is compatible with query output. Thus SBQL procedures and func-
tions are fully and seamlessly integrated with SBQL queries. Parameters can be passed
by call-by-value, call-by-reference and strict-call-by-value techniques.

Statements in SBQL procedures use SBQL queries. An SBQL query preceded by
an imperative operator is a statement. Statements such as if, while, for each, etc. can
be more complex than in typical programming languages, see [3]. SBQL includes
many such imperative operators (object creation, assignment, insertion, deletion, flow
control statements, loops, etc.).

Below we present a recursive procedure which finds all components of a specific
part, along with their amount required to make this part. It consists of a single return
statement. The returned value is an empty collection or the result from recursive invo-
cation of the same procedure. For simplicity we omit types of parameters and the type
of function result.

procedure SubPartsHowMany(myPartsHowMany){
return

if not exists(myPartsHowMany) then bag()
else bag(myPartsHowMany,

SubPartsHowMany(myPartsHowMany.c.Component.
((leadsTo.Part) as c, howMany * amount) as howMany))

)
}

The procedure takes a collection of structures as the parameter (myPartsHow-
Many). Each structure contains c (a reference to a part) and howMany (the amount of
parts).

The example below shows that this procedure may take a collection of parameters,
instead of a single parameter, without any alterations:

SubPartsHowMany(bag((Part where name = ”engine”) as c, 68 as howMany),
 (Part where name = ”gearbox”) as c, 135 as howMany)))

An advantage of recursive procedures is simplicity of the problem decomposition.
A recursive task can be easily distributed among several procedures (some of which
may be reused in other tasks). A procedure calculating the cost and mass of a part
illustrating this possibility is shown below. The procedure utilizes the previously de-
fined SubPartsHowMany procedure in order to perform the recursive processing and
then performs calculations, on local variables (introduced by create local).

procedure CostAndMass(myPartsHowMany) {
if not exists(myPartsHowMany) then return bag();
create local SubPartsHowMany(myPartsHowMany) as parts;
create local parts.((Detail) c as d, howMany as howMany) as details;
create local parts.((Aggregate) c as a, howMany as howMany) as aggregates;
create local sum(details.(howMany*d.detailMass)) as detailsMass;
create local sum(details.(howMany*d.detailCost)) as detailsCost;
create local sum(aggregates.(howMany*a.assemblyMass)) as addedMass;
create local sum(aggregates.(howMany*a.assemblyCost)) as addedCost;
return ((addedCost+detailsCost) as cost, (addedMass+detailsMass) as mass);

}

Recursive procedures in SBQL offer many advantages when compared to stored
procedures in relational database systems. Most of them are consequences of the fact
that procedures in SBQL are a natural extension of the SBA, working on the same
principles and evaluated by the same evaluation engine, while in relational systems
stored procedures are add-ons to the system evaluated separately from SQL queries.
SBQL queries are valid as expressions, procedure parameters, etc. The type system is
the same and there is no impedance mismatch between queries and programs.

SBQL updateable views are based on procedures and as such can be recursive and
can utilize any other SBQL option, in particular parameters. Note that recursion with-
out parameters makes little sense, thus if one assumes that views can be recursive then
they must have parameters too. Recursive parameterized views are not available in
any query language but SBQL. SBQL updateable views are discussed in detail in
several publications, e.g. in [3, 5]. A simple read-only view, returning all subparts of
parts which names are passed as a parameter, is shown below.

create view EnginePartsDef {
virtual objects EngineParts (whichParts){
 if not exists(whichParts) then return bag();
 create local (Part where Name in whichParts) as p;

return (p union EngineParts(p.Component.leadsTo.Part.name)) as b;
}
on retrieve do return b;

}

Here is an example invocation of this view:

EngineParts(“pacer”)

Similarly to transitive closures and fixpoint systems, recursive procedures may per-
form calculations without referring to the database. The example below shows a recur-
sive procedure which calculates the square root of its parameter. The task is solved by
two procedures, where the second one is recursive.

procedure sqrt(a) {
if (a < 0) then return -999999; //exception
return sqrtRecursive (a, 1, 1);

}

procedure sqrtRecursive (a, x, c) {
if (c = 5) then return x;
return sqrtRecursive (a, (a/x + x)/2, c+1);

}

SBQL procedures and views can be used not only as a direct way of achieving the
recursion via writing recursive procedures, but also as a means of writing reusable and
parameterized queries with transitive closures and fixpoint systems. Here are the ex-
amples.

procedure sqrtTransitive(a){
 return ((1 as x, 1 as c)

 close by (((a/x + x)/2 as x, c +1 as c) where c ≤ 5))
).
 (x where c = 5)

}

procedure sqrtFixpoint(a){
 return
 fixpoint(x) {
 y :- (1 as r, 1 as c) union (y.(a/r + r)/2 as r, c+1 as c) where c ≤ 5;
 x :- (y where c = 5).r;
 }
}

6 Optimizations

A query language implementation without optimization is hardly accepted by the users
due to bad performance. The amount of information stored in current databases would
make the evaluation time of most queries unacceptable. The problem is even bigger in
the case of recursive queries, as the evaluation cost of such queries is usually higher
than in the case of non-recursive ones. It makes query optimization research a high
priority task. Clearly defined semantics of SBQL allows for a systematic and disci-

plined approach to this problem. The adaptation of well-known techniques is possible.
Query rewriting optimizations for SBQL are described e.g. in [3, 6]. The techniques
useful for transitive closure queries are also presented there. Other optimization tech-
niques, however, have not been investigated in detail yet. This applies to various in-
dex-based techniques, fixpoint system optimizations using semi-naïve evaluation and
magic set techniques [7].

7 Recursive Queries – State of the Art

Currently three approaches to recursive query processing are prevalent:
• Extending SQL (or other query language) with the transitive closure operator;
• Languages based on deductive rules, such as Datalog; semantics of such lan-

guages can be expressed by fixed point equations;
• Utilization of stored procedures to provide recursive capabilities or delegation of

recursive calculations to a universal programming language.

7.1 Transitive Closure

In relational databases introducing the transitive closure operator meets non-trivial
problems:

• The operator cannot be expressed in the relational algebra, thus some extensions
of the algebra have been proposed.

• The computational power of the transitive closure operator can be insufficient.
Some advanced closures, e.g. the query “get the total cost and mass of a given
part X” (assuming BOM structures) is impossible to express assuming typical
syntax of the transitive closure operator [4].

• Calculation of transitive closure leads to performance problems. The issue has
resulted in many algorithms, such as those described in [8, 9, 10].

SQL89 and SQL92 do not include transitive closure operator. Such operators are
supported by Oracle and DB2 DBMS, and are included in SQL99 (aka SQL3) and
SQL2003 standard proposals. In the following we present the solutions and discuss
our test results for transitive closures implemented in Oracle and DB2.

Recursive Queries in Oracle. The Oracle DBMS provides support for recursive
queries in the form of so called “hierarchical queries”, with a CONNECT BY clause
extending the SELECT statement. Queries can be further refined by a WHERE clause.
Standard CONNECT BY clause returns an error if a loop is encountered in the
queried data. Oracle 10g introduced a modified CONNECT BY clause, CONNECT
BY NOCYCLE clause. It allows the programmer to formulate queries on data with
cycles. Encountered cycles are ignored.

Oracle provides additional pseudocolumns, which can be used in queries, such as
LEVEL (the level of a particular tuple in the hierarchy) or CONNECT_BY_ISLEAF

(is a particular tuple at the bottom of the hierarchy?). It also provides utility functions,
which can be used in SELECT clause such as SYS_CONNECT_BY_ROOT which
finds the root element of hierarchy for each selected element.

The Oracle solution to the problem of recursive queries suffers from serious draw-
backs. First we note that from the semantic point of view it is very difficult to grasp,
and it is additionally obscured a lot of proprietary options. Probably the most serious
problem is the evaluation order of a query with a join. Materializing the join first
might result in serious performance problems, when querying large tables. Unfortu-
nately, query optimization by performing selections before joins (probably the most
promising technique in this case) might be difficult due to the fact that the operation in
question is not possible to express in the relational algebra. Any query optimization
related to steps executed after the join operation will have a minor effect; probably it
will not influence the cost of the most time consuming operations.

Auxiliary pseudocolumns are another sign of immaturity of the Oracle’s solution.
Oracle does not allow the users to perform any calculations in a recursive query (such
as calculating the level of hierarchy a tuple is on). This makes such pseudocolumns
necessary to formulate even the most basic queries. While this feature might be proven
useful for a less experienced user (asking relatively simple queries), it is not as flexi-
ble as other approaches, e.g. like the approach represented by DB2 and the approach
proposed for SBQL.

The effort put by the Oracle developers into maintaining the hierarchy of tuples in
the result set does not seem to be justified. Users querying the database by any other
means than the SQL console will have to reconstruct the hierarchy of elements any-
way. In such a situation the approach presented by DB2 might be superior, because it
allows the user to calculate information useful in recreation of the hierarchy during
query evaluation.

Recursive Queries in DB2. Similarly to Oracle, DB2 supports recursive queries
through transitive closures. The syntax and semantics of the corresponding solution is,
however, totally different.

Unlike Oracle, DB2 does not provide pseudocolumns containing additional infor-
mation. However, DB2 provides another powerful facility for programmers. It allows
the programmers to perform their own calculations in recursive queries. Information,
such as a tuple’s level in the hierarchy, can be calculated according to the user’s need.
The tasks performed by functions in Oracle, such as finding root tuples or paths to a
tuple (SYS_CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH in Oracle),
can be formulated in DB2 with no proprietary utility functions.

The solution for recursive queries in DB2 seems to be superior to the solution by
Oracle. Instead of focusing on enhancing the language constructs by additional system
functions and pseudocolumns, IBM has provided a flexible solution compatible as far
as possible with the general SQL idea. Recursive queries in DB2 seem to be very
similar to those proposed in SQL-99.

Recursive Queries in SQL-99. SQL-99 (aka SQL3) was the first SQL standard
proposal that introduces recursive queries. Recursive queries in SQL3 are similar to

those implemented in DB2 (except for syntactic sugar). Their existence is their most
important and useful feature. However, limiting to linear recursion is poorly justified.
This imposes serious limitations of useful queries, as well as results in workarounds
being used in relatively simple queries [11]. Also the restriction of operations which
can be used in mutually recursive queries seem to be troublesome and poorly
motivated. Because SQL3 does not have precisely defined semantics, it is impossible
to accurately predict which queries will result in an oscillation. In effect, some
queries, which would not result in oscillation, may be forbidden, while others,
resulting in oscillation, are not. Another mechanism preventing execution of queries
containing such infinite loops may be required.

7.2 Fixed Point Equations

Some recursive tasks cannot be expressed using transitive closure operation, but can
be expressed using a fixed-point equation system. In order to solve a recursive task,
the least fixed point of an equation system has to be found.

x1 ← f1(x1, x2,…, xn)
x2 ← f2(x1, x2,…, xn)

…
xn ← fn(x1, x2,…, xn)

The fixpoint systems may be used in a similar way to transitive closures. The typical
introductory example of a fixpoint system is a single fixpoint equation performing the
computation of a transitional closure. However, as some professionals believe, the
biggest potential of fixpoint systems may lie in evaluating the so-called business rules,
i.e., the sets of many fixpoint equations used to solve complex recursive problems.

Fixed Point Equations in Datalog. Datalog is a database query language that some
authors associate with artificial intelligence. Datalog is a manifestation of the
paradigm known as deductive databases [12], claimed to be superior over typical
databases due to some “intelligence” or “reasoning capabilities”. The common
terminology is that Datalog programs consist of deductive rules, where deduction is a
form of strong formal reasoning with roots in mathematical logic. Because the rules
can be recursive, their semantic model can be expressed by a least fixed point
equation system. In particular, [13] presents the fixed point semantics of Datalog and
[14] presents how semantics of Datalog can be expressed through fixed point
equations over expressions of the relational algebra.

First papers on deductive databases appeared in 1983. Despite more than 20 years
of history and very big pressure of academic community to introduce Datalog as a
commonly used database query language (hundreds of papers, books, reports, dozens
of academic projects, special conferences, journals, etc.) Datalog failed as a useful
software production tool. According to our experience, the following disadvantages
cause a catastrophic effect on the Datalog usability:

• Lack of efficient methodology supporting the developers of applications in tran-
sition from business conceptual models to Datalog programs. For real applica-

tions an average developer or programmer has no idea how to formulate Datalog
rules in response to typical results of analysis and design processes (stated e.g.
in UML).

• Although Datalog is claimed to be a universal query language, its real applica-
tion area is very limited to niche applications requiring some “intelligence” ex-
pressed through syllogisms and recursive rules.

• Limits on data structures that Datalog deals with. Current object-oriented analy-
sis and design methodologies as well as programming languages and environ-
ments deal with much more sophisticated data structures (e.g. complex objects
with associations, classes, inheritance, etc.) than relational structures that Data-
log deals with. Complex data structures allow one to get the software complex-
ity under control.

• „Flatness” of Datalog programs, i.e. lack of abstraction and encapsulation
mechanisms, such as procedures, views or classes. This flaw means no support
for hierarchical decomposition of a big problem to sub-problems and no support
for top-down program design and refinement and encapsulation of problem de-
tails.

• Datalog is stateless thus it gives no direct possibility to express data manipula-
tion operations. The majority of applications require update operations, which
are possible to express in Datalog only via side effects, with no clear formal se-
mantics.

• Datalog implies significant problems with performance. Current optimization
methods, such as magic sets, do not seem to be sufficiently mature and efficient.

Deductive Object-Oriented Databases. Datalog in its original form does not provide
any facilities for processing complex data structures. Since late eighties researchers
investigated the problem of combining object-oriented and deductive capabilities in a
single DBMS. These efforts resulted in multiple implementations, reviewed in [15].
Three different strategies of the design of an OO deductive query language are
possible:

• Language extension: existing language is extended with new (in this case OO-
related) features.

• Language integration: a deductive query language is integrated with an impera-
tive programming language, in the context of an object model or type system.

• Language reconstruction: a new logic language that includes object-oriented fea-
tures is created, with an OO data model as a base.

Language reconstruction obviously requires more effort than the two other strate-
gies, but it is likely to produce the best results. The language extension strategy may
fail to capture all the aspects of OO programming and data model, as well as leads to
detachment of the resulting query language from its theoretical foundations due to the
introduction of features not originally intended to be a part of it. The success of the
language integration strategy strongly depends on the degree to which the seamless-
ness of language integration is achieved.

One of the examples of OO deductive query languages is the OLOG query lan-
guage described in [16]. OLOG is based on IQL, i.e. an older OO query language and
the O2 object-oriented data model. It uses fixpoint semantics and syntax similar to
Datalog, however it also supports data manipulation, which is a problem often over-
looked in query languages (e.g. Datalog and OQL).

OLOG uses a database schema during query processing. The schema may contain
classes and relations. Classes are collections of objects and relations are collections of
tuples. The difference between an object and a tuple in OLOG is that the objects have
unique object identifiers, and tuples do not, otherwise they’re very similar, both can be
nested and contain both complex and atomic values. OLOG classes support inheri-
tance, including multiple inheritance. Unfortunately, as OLOG is only a pure query
language. It is not integrated with programming language constructs and does not
support procedures, functions or methods.

DOQL [17] is a deductive query language for ODMG-compliant databases. The
language is an important contribution to the ODMG standard, as OQL (the primary
query language for ODMG compliant OO databases) does not support recursive que-
ries. DOQL does not differ much from OLOG when it comes to syntax and capabili-
ties. It does, however, differ from OLOG in evaluation technique. DOQL queries are
mapped to an object algebra, making the use of existing OQL optimization facilities
possible (according to the claims of the authors).

Both OLOG and DOQL are typical examples of an OO deductive query languages.
Derived from Datalog, they support a limited range of OO features (e.g. they support
inheritance, but do not support method implementation) and utilize one of proven
Datalog semantics (in this case fixpoint semantics). Their limitations, however, pose
an important question: are they indeed object-oriented query languages, or just deduc-
tive query languages capable of processing complex data.

7.3 Recursive Procedures and Functions

Recursive procedures and functions are probably the most common approach to solv-
ing recursive problems. A recursive procedure contains direct or indirect call to itself.
They can be used for efficient and elegant problem solution in a case when there is a
solution for a very small scale (e.g. for an argument 1) and then there is a rule for
expressing the problem on a bigger scale via solutions on the smaller scale (e.g. the
solution for argument n is expressed via solutions for an argument n−1). Recursive
functions are also commonly used for processing tree-like structures.

Recursive functions are among features of almost every programming language in
common use. This applies also to the programming languages used to write stored
procedures, such as the Oracle’s PL/SQL and Transact SQL used in Microsoft SQL
Server and Sybase databases, although most of those languages impose some limita-
tions on the recursion. The semantics of recursive procedures requires an environment
stack which is used to store parameters, local program entities and a return trace for
each procedure invocation.

To be fully usable in the recursive queries context, recursive functions must be
compatible with the domain of query outputs. Thus parameters for such functions

should be any queries, possibly returning any bulk output. Without explicit parameters
recursive functions have little sense (they must be parameterized by side effects,
which is a worse option). Moreover, the output from recursive functions should be
compatible with query output too. Full orthogonality of language constructs requires
that the domain of query output should be the same as the domain of function parame-
ters and as the domain of function outputs. Unfortunately, this rather obvious require-
ment is not satisfied by recursive procedures and functions known from commercial
systems.

Due to the limitations of database programming languages, recursive data process-
ing is implemented outside the database management system within client applica-
tions. They perform the recursive processing on their own, utilizing facilities provided
by programming languages such as Java or C++ to perform operations impossible or
very difficult to implement in a particular database programming language. Such an
approach, while attractive due to the ease of use and extensive standard libraries of
modern programming languages, has also its drawbacks, serious enough to limit the
usability. Main drawbacks are as follows:

• In contrast to database programming languages, database access is not seam-
lessly integrated with a programming language. The application programming
languages have to use database access APIs, such as ODBC or JDBC.

• Database and programming language type systems are usually different. This re-
sults in impedance mismatch, i.e. the need to convert types during the process-
ing.

• Usually parameters and output of programming language functions cannot be
bulk, in contrast to results of queries. This means that in many cases recursion
must be supported by iteration scanning sequentially bulk data. Such feature
leads to clumsy code and problems with code writing and maintenance.

• Processing takes place outside DBMS, on the side of client application. It is
more difficult to endanger the stability of DBMS with a poorly written function
(for example one with an infinite recursion), and thus it reduces or eliminates
the need for drastic security measures (such as the limit on depth of the recur-
sion). At the same time, it seriously reduces performance due to the communica-
tion overhead and may generate large volume of network traffic, due to the high
volume of transmitted data.

Those problems make recursive processing outside DBMS not always convenient.
However, in most cases it is the only available choice.

7.4 State-of-the-Art Conclusions

Presented recursive query facilities are the most widespread and well known solutions
of the recursive query problem. Unfortunately, they are also representative for the
group – available solutions do not differ much from those presented.

Recursive query processing, despite the interest in the problem shown by both
academic and commercial communities, is still immature. Most of the current research
focuses on removing the inadequacies of existing solutions, but unfortunately, the

chance of radically improving the situation is small, as the inadequacies come from
the foundations of a particular approach.

The transitive closure is a concept beyond the relational algebra on which SQL is
based on. Introducing this feature undermines optimization techniques such as query
rewriting. Recursion causes that it is much more difficult to guarantee that the rewrit-
ten query will be semantically equivalent. Most of the optimization techniques for
transitive closure queries are based on workarounds such as materialized views
(cached query results), which introduce new problems (like the maintenance of mate-
rialized views).

Fixpoint equation systems have much potential. Unfortunately, Datalog (the only
wide known language, which semantics can be described in terms of fixpoint equation
systems) is seriously flawed as a general purpose query language. It does not cover the
problem of imperative operations, such as updates, deletes etc. The Datalog variants
based on the first-order logic are limited in their expressiveness. More expressive
variations do not have such well understood theoretical foundations, which makes
optimization (and providing any proofs to support the “deductions”) more difficult. It
also does not take into account user needs. The most popular queries on values of
tuple attributes are not well supported by Datalog. It mostly concentrates on “deduc-
ing” facts using other facts and rules. All those drawbacks, as well as the trend of
presenting the Datalog using formalized mathematical language (not necessarily liked
or well understood by most programmers), result in the effect that Datalog is still not
accepted by the commercial world. Object-oriented deductive query languages, based
on Datalog usually utilize fixpoint semantics. However, they usually do not provide
the full range of features required in an useful OO query language. Thus they may be
interesting as prototypes and the basis for further research, but their potential for prac-
tical applications is currently very limited.

Recursive functions as a way to implement recursive queries also have drawbacks.
Even in database programming languages, such as PL/SQL, the binding to the data-
base is not exactly seamless. For example, it is still impossible to return a tuple (or a
set of tuples) as the result of a function. The standard libraries provided lack of some
very important features (such as collections). Recursive functions in their current form
are also unsuited to ad-hoc querying.

The discussion presented above shows immaturity of current solutions to the prob-
lem of processing recursive queries. Those problems are the result of limited concep-
tual foundations on which those solutions are based. The only possible way to get rid
of those problems is using a completely different foundation for creating a mature and
consistent solution.

8 Conclusions

We have presented recursive query processing capabilities for the Stack-Based Query
Language (SBQL). SBQL offers very powerful and flexible recursive querying facili-
ties for object-oriented environments. Within a universal framework SBQL provides

both object-oriented (classes, inheritance) and deductive (transitive closure, fixpoint)
features.

The transitive closure allows formulating queries more powerful and easily read-
able than SQL queries when compared with Oracle and DB2 SQL variants of transi-
tive closure operators. Combined with the ease of semi-structured data handling in
SBQL this may make XML data processing much easier.

Fixpoint systems provide SBQL with recursive capabilities similar to deductive
query languages. However SQBL offers much more freedom, as there are no restric-
tions on operators which may be used within the queries. SBQL is also much better
prepared to handle structured and semi-structured data than Datalog and its variants.
This freedom, however comes at a cost, because the programmer must make sure that
the query does not start an infinite evaluation loop.

Recursive procedures and views provided by SBQL allow to solve easily complex
problems through problem decomposition, code reuse and other facilities typical for
imperative programming languages. They are seamlessly integrated with the querying
capabilities and allow the programmer to fully benefit from all the query language and
DBMS properties, i.e. macroscopic statements, handling of bulk data, persistent stor-
age and optimization for queries used within procedures.

With the recent rise of interest in recursive processing due to the emergence of
XML, RDF and other similar standards the SBQL seems to provide an interesting and
universal alternative to other query languages.

References

1. K.Subieta, C.Beeri, F.Matthes, J.W.Schmidt. A Stack-Based Approach to Query Languages.
Proc. East-West Database Workshop, 1994, Springer Workshops in Computing (1995)

2. K.Subieta, Y.Kambayashi, and J.Leszczyłowski. Procedures in Object-Oriented Query
Languages. Proc. VLDB Conf., 182-193, Morgan Kaufmann (1995)

3. K.Subieta. Theory and Construction of Object-Oriented Query Languages. Editors of Pol-
ish-Japanese Institute of Information Technology, Warsaw 2004, 522 pages, (in Polish)

4. M.P.Atkinson, P.Buneman. Types and Persistence in Database Programming Languages.
ACM Computing Surveys 19(2):105-190, ACM (1987)

5. H.Kozankiewicz, K.Subieta. SBQL Views –Prototype of Updateable Views. Proc. 8th East-
European Conference on Advances in Databases and Information Systems (ADBIS), Sep-
tember 2004, Budapest, Hungary.

6. J.Płodzie�, K.Subieta. Applying Low-Level Query Optimization Techniques by Rewriting,
Proc. DEXA Conf., Lecture Notes in Computer Science 2113: 867-876, Springer (2001)

7. J.D.Ullman. Principles of Database and Knowledge-Base Systems, volume II, ch. 13, W H
Freeman, 1990

8. F.Fotouhi, A.Johnson, S.P.Rana. A hash-based approach for computing the transitive clo-
sure of database relations, The Computer Journal vol. 35 no. 3: A251--A259, Oxford Uni-
versity Press (1992)

9. W.Yan, N.M.Mattos. Transitive Closure and the {LOGA} + -Strategy for its Efficient
Evaluation, Mathematical Fundamentals of Database Systems, Lecture Notes in Computer
Science 364: 415-428, Springer (1989)

10.S.Taylor, N.I.Hachem, A Direct Algorithm for Computing the Transitive Closure of a Two-
Dimensionally Structured File, Lecture Notes in Computer Science 495: 146-159, Springer
(1991)

11.J.D.Ullman, J.Widom. A First Course in Database Systems, ch.5, Prentice Hall, 1997
12.H.Gallaire, J.Minker, J.-M.Nicolas: Logic and Databases: A Deductive Approach. ACM

Comput. Surv. 16(2): 153-185, ACM (1984)
13.S.Abiteboul, R.Hull, V.Vianu. Foundations of Databases, ch. 12, Addison-Wesley (1995)
14.S.Ceri, G.Gottlob, L.Tanca. What You Always Wanted to Know About Datalog (And Never

Dared to Ask). IEEE Transactions on Knowledge and Data Engineering 1(1): 146-167,
IEEE Computer Society (1989)

15.P.R. Falcone Sampaio, N.W. Paton Deductive Object-Oriented Database Systems: A Sur-
vey, LNCS: Proceedings of the Third International Workshop on Rules in Database Sys-
tems: 1 - 19, Springer-Verlag (1997)

16.X. Li and M. Liu, Design and Implementation of the OLOG Deductive Object-Oriented
Database System. In Proceedings of the 11th International Conference on Database and Ex-
pert Systems Applications (DEXA 2000), London, Greenwich, UK. September 4-8, 2000.
Lecture Notes in Computer Science, Vol. 1873, Springer 2000

17.P. R. F. Sampaio, N. W. Paton, Deductive Queries in ODMG Databases: the DOQL Ap-
proach, Proceedings of the 5th International Conference on Object-Oriented Information
Systems (OOIS): 57-74, Springer-Verlag (1998)

