
X100
Architektura nowoczesnego

systemu bazodanowego

Marcin Żukowski
(marcin@cwi.nl)

MIMUW, 2009-05-28

X100, MIMUW, 2009-05-28

Polska trudna język

  Prezentacja po polsku

  Eksperyment

  Przepraszam za pomyłki

  Slajdy po angielsku

2

X100, MIMUW, 2009-05-28 3

Application focus

  Two major DBMS application types

  Transaction processing – not today

  Data-analysis applications
  Data warehousing, reporting etc.

  Scientific data, information retrieval

  A lot of technical content… wake up!

X100, MIMUW, 2009-05-28 4

Outline

  Traditional database performance

  Improvements in MonetDB

  X100

  Query execution

  Storage

X100, MIMUW, 2009-05-28 5

Motivation

TPC-H benchmark (1GB), Query 1

  Selects 98% of a fact table (6M rows), performs
simple aggregations

  Performance:

  C program: ?

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 6

Motivation

TPC-H benchmark (1GB), Query 1

  Selects 98% of a fact table (6M rows), performs
simple aggregations

  Performance:

  C program: 0.2s

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 7

Database performance

  Why so slow?

  Inefficient data storage format

  Inefficient query processing model

X100, MIMUW, 2009-05-28 8

N-ary storage model (NSM)

  Attributes in a record

Joe 101 27 Black

Edward 103 21 Scissorhand

X100, MIMUW, 2009-05-28 9

Real-life NSM implementation

  Pages on disk – example:

27 Black Joe

21 Scissorhand Edward

101

103

pointers to tuples

Var-width attribute pointers

X100, MIMUW, 2009-05-28 10

NSM problems

  Always read all the attributes
  Poor bandwidth and buffer-space use

  Terrible on disk

  Bad in memory

  Complex tuple structure and navigation

  e.g. compressing out null fields

X100, MIMUW, 2009-05-28 11

Column stores to the rescue!

  Store attributes separately

  Read only attributes used by a query

X100, MIMUW, 2009-05-28 12

“Traditional” column stores

  Data path

  Read columns from disk

  Convert into NSM

  Use NSM-based processing

  Examples: Sybase IQ, Vertica

  Not enough!

  Only I/O problem addressed

X100, MIMUW, 2009-05-28 13

How databases run a query

Query

SELECT
 name,
 salary*.19 AS tax

FROM
 employee

WHERE
 age > 25

X100, MIMUW, 2009-05-28 14

Database operators

Tuple-at-a-time iterator
interface:
-  open()
-  next(): tuple
- close()

next() is called:
-  for each operator
- for each tuple

Complex code repeated
over and over

X100, MIMUW, 2009-05-28 15

Primitive functions

Provide data-specific
computational functionality

Called once for every
operation on every tuple.

Even worse with complex
tuple representation

Perform one operation
(e.g. addition) in one call

X100, MIMUW, 2009-05-28 16

DBMS performance - IPT

  Lots of repeated, unnecessary code

  Operator logic

  Function calls

  Attribute access

  Most instructions interpreting a query

  Very few instructions processing actual data!

  High instructions-per-tuple (IPT) factor

X100, MIMUW, 2009-05-28 17

Modern CPUs

  New CPU features over the last 20 years

  RAM too slow - instruction and data cache

  Complex CPU pipelines – branch sensitivity

  Superscalar features – multiple instructions at once

  SIMD instructions (SSE)

  Great for e.g. multimedia processing…

  … but bad for database code!

X100, MIMUW, 2009-05-28 18

DBMS performance - CPI

  CPU-unfriendly code

  Complex code: function calls, branches

  Poor use of CPU cache (both data and instructions)

  Processing one value at a time

  Compilers can’t help much

  High cycles-per-instruction (CPI) factor

X100, MIMUW, 2009-05-28 19

DBMS performance

  Performance factors:

  High instructions-per-tuple

  High cycles-per-instruction

  Very high cycles-per-tuple (CPT)

  Others can do better

  Scientific computing, mulitmeda, …

  How can we?

X100, MIMUW, 2009-05-28 20

MonetDB

  MonetDB – 1993-now, developed at CWI

  In-memory column store

  Focused on computational efficiency

  Predecessor of X100

X100, MIMUW, 2009-05-28 21

MonetDB: a column store

  “save disk I/O when scan-intensive queries

need a few columns”

X100, MIMUW, 2009-05-28 22

MonetDB: a column store

  “save disk I/O when scan-intensive queries

need a few columns”

  “reduce interpretation overheads to improve

computational efficiency”

X100, MIMUW, 2009-05-28 23

MonetDB in action
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

X100, MIMUW, 2009-05-28 24

MonetDB in action
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

X100, MIMUW, 2009-05-28 25

MonetDB in action
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

Simple, hard-
coded operators

int
select_gt_float(oid* res,
 float* column,

 float val, int n)
{
 for(int j=0,i=0; i<n; i++)
 if (column[i] >val) res[j++] = i;
 return j;
}

CPU Efficiency depends on “nice” code
-  no function calls
-  few dependencies (control,data)
-  compiler support

Compilers love simple loops over arrays
-  loop unrolling, loop pipelining
-  automatic SIMD

X100, MIMUW, 2009-05-28 26

MonetDB: a column store

  “save disk I/O when scan-intensive queries

need a few columns”

  “reduce interpretation overheads to improve

computational efficiency”
  Hard-coded, specialized operators (thousands!)

  No function calls

  Array-based processing

X100, MIMUW, 2009-05-28 27

MonetDB problem
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

MATERIALIZED
intermediate

results

X100, MIMUW, 2009-05-28 28

Materialization problem

  Extra main-memory bandwidth

  Performance is sub-optimal…

  … but still faster than anything else (5 years ago)

  Reduces scalability

  Can’t afford writing to disk

  Only effective for limited data sizes and not all
query types

X100, MIMUW, 2009-05-28 29

MonetDB: a Faustian Pact

  You want efficiency

  Simple hard-coded operators

  I take scalability

  Result materialization

X100, MIMUW, 2009-05-28 30

MonetDB: a Faustian Pact

  You want efficiency

  Simple hard-coded operators

  I take scalability

  Result materialization

  C program: 0.2s

  MonetDB: 3.7s

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 31

MonetDB: a Faustian Pact

  You want efficiency

  Simple hard-coded operators

  I take scalability

  Result materialization

  C program: 0.2s

  MonetDB: 3.7s

  MySQL: 26.2s

  DBMS “X”: 28.1s

Supports SQL and XQuery

Open-source download:
monetdb.cwi.nl

X100, MIMUW, 2009-05-28 32

X100

  My PhD thesis

  Motivation:

  let’s fix MonetDB scalability problem…

  … and improve the performance on the way

  Core ideas:

  New execution model

  High performance column storage

X100, MIMUW, 2009-05-28 33

Typical Relational DBMS Engine

Query

SELECT
 name,
 salary*.19 AS tax

FROM
 employee

WHERE
 age > 25

Iterator model is nice

Tuple-based
processing is bad

X100, MIMUW, 2009-05-28 34

X100: “Vectors”

X100, MIMUW, 2009-05-28 35

X100: “Vectors”

Vector contains data
of multiple tuples
(~100-1000)

All operations
consume and
produce entire
vectors

Effect: much less
operator.next() and
primitive calls.

X100, MIMUW, 2009-05-28 36

Vectors
Column slices as

 unary arrays

Not because:
Columns are better for storage
than rows
(though we still think it often is)

But because:
-  simple and efficient
- SIMD friendly layout
- Assumed cache-resident

X100, MIMUW, 2009-05-28 37

Vectorized Primitives
int
select_lt_int_col_int_val (
 int *res,
 int *col,
 int val, int n)
{
 for(int j=i=0; i<n; i++)
 if (col[i] < val) res[j++] = i;
 return j;
}

Most primitives
take just 0.5 (!) to
10 cycles per tuple

10-100+ times
faster than
tuple-at-a-time

X100, MIMUW, 2009-05-28 38

X100

  Both efficiency…

  Vectorized primitives

  … and scalability

  Pipelined query evaluation

  C program: 0.2s

  X100: 0.6s

  MonetDB: 3.7s

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 39

Varying the Vector size

Less and less
operator.next() and

primitive function calls
(“interpretation overhead”)

X100, MIMUW, 2009-05-28 40

Varying the Vector size

Vectors start to exceed the
CPU cache, causing

additional memory traffic

X100, MIMUW, 2009-05-28 41

Why is X100 so fast?
  Reduced interpretation overhead

  100+ times fewer function calls

  Good CPU cache use
  High locality in the primitives

  Cache-conscious algorithms

  No Tuple Navigation
  Primitives only see arrays

  Vectorization allows algorithmic optimization
  CPU and compiler-friendly function bodies

  Multiple work units, loop-pipelining, SIMD…

X100, MIMUW, 2009-05-28 42

Feeding the Beast

X100 uses ~100 cycles per tuple for TPC-H Q1

  Q1 has ~30 bytes of used columns per tuple

  3GHz CPU core

 eats 900MB/s

No problem for RAM

But disk-based data?

X100, MIMUW, 2009-05-28 43

Using Disk in the 21th century

Poor random disk access needs
to be compensated with more and

more disk heads.
(tens, hundreds… thousands!)

Focus on scanning!

Databases traditionally depend
on secondary indices resulting

in many random disk accesses

X100, MIMUW, 2009-05-28 44

Feeding the Beast (1)

Two ideas pursued:

  Lightweight compression to enhance disk bandwidth

  Maximizing disk

 scan sharing in

 concurrent queries.

X100, MIMUW, 2009-05-28 45

Compression to improve I/O bandwidth

  0.9GB/s query consumption

  1/3 CPU for decompression 1.8GB/s needed

 new lightweight compression schemes

X100, MIMUW, 2009-05-28 46

Key Ingredients

  Compress relations on a per-column basis
  Easy to exploit redundancy

  Keep data compressed in main-memory
  More data can be buffered

  Decompress vector at a time
  Minimize main-memory overhead

  Use light-weight, CPU-efficient algorithms
  Exploit processing power of modern CPUs

X100, MIMUW, 2009-05-28

CPU-friendly decompression

  Tuples classified into “hits” and “misses”
void decompress(size_t n, char* in, int *out, int *misses, int first_miss)
 for (i =0; i < n; i++) // decode all values
 out[i] = DECODE(in[i]); // including misses
 for (i = first_miss, j = 0; i < n; i += in[i]) // patch misses
 out[i] = misses[j++]; // using exception table

47

X100, MIMUW, 2009-05-28 48

TPC-H 100 GB

TPC-H

query

X100 on 1 CPU DB2 – 8 CPUs

Compression
ratio

4 disks 12 disks 142 disks

Speedup Time (s) Speedup Time (s) Time (s)

01 4.33 4.41 69.6 1.29 50.9 111.9

03 3.04 3.10 11.3 1.48 6.0 15.1

04 8.15 7.58 2.4 2.67 1.8 12.5

05 3.81 3.55 15.3 1.06 16.2 84.0

06 4.39 4.50 10.7 2.35 4.6 17.1

07 1.71 1.66 72.0 0.84 40.8 86.5

Linear speedup
with slow disks

Decent improvement
with fast disks

Competes with DB2 using
~10x less resources

X100, MIMUW, 2009-05-28 49

Feeding the Beast (2)

Two ideas pursued:

  Lightweight compression to enhance disk bandwidth

  Maximizing disk

 scan sharing in

 concurrent queries.

X100, MIMUW, 2009-05-28 50

Concurrent scans

  Multiple queries
scanning the same table
  Different start times

  Different scan ranges

  Compete for disk access
and buffer space

  FCFS request
scheduling: poor latency

X100, MIMUW, 2009-05-28 51

“Normal” scans in real life

X100, MIMUW, 2009-05-28 52

Shared scans

  Observation: queries
often do not need data in
a sequential order

  Idea: make queries
“share” the scanning
process

  Two existing types:
  Attach

  Elevator

X100, MIMUW, 2009-05-28 53

“Attach” in real life

X100, MIMUW, 2009-05-28 54

“Elevator” in real life

X100, MIMUW, 2009-05-28 55

Existing shared scans

  Benefits

  Less I/O operations

  Better data reuse

  Problems

  Sharing decisions static (when a query starts)

  Misses opportunities in a dynamic environment

  Not sensitive to different query types

X100, MIMUW, 2009-05-28 56

“Relevance” scans

  Core ideas

  Dynamically adapt to the current situation

  Allow fully arbitrary data order

  Goals:

  Maximize data sharing

  Optimize latency and throughput

  Work for different types of queries

X100, MIMUW, 2009-05-28 57

“Relevance” in real life

X100, MIMUW, 2009-05-28 58

Results

X100, MIMUW, 2009-05-28 59

Conclusions
  Presented X100

  A new database kernel

  Uses block-oriented iterator model (vectorization)

  works amazingly well

  So fast, must reduce hunger for hard disk bandwidth
  Column storage specialized in sequential access

  + Lightweight compression schemes (give ~~ factor 3)

  + Cooperative bandwidth sharing (gives ~~ factor 2)

  Good performance results
  Fastest raw 100GB TPC-H performance around (** not fair)

  Beats IR systems on Terabyte TREC

X100, MIMUW, 2009-05-28

Literature
  Monet:

  “Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications”
P.Boncz, PhD thesis 2002

http://old-www.cwi.nl/htbin/ins1/publications?request=intabstract&key=Bo:DISS:02

  X100:
  “MonetDB/X100: A DBMS In The CPU Cache”

M.Zukowski, P.Boncz, N.Nes, S.Heman, DeBull 2005

  “MonetDB/X100: Hyper-Pipelining Query Execution”

P.Boncz, M.Zukowski, N.Nes, CIDR 2005

  “Super-Scalar RAM-CPU Cache Compression”

M.Zukowski, S.Heman, N.Nes, P.Boncz, ICDE 2006

  “Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS”

M.Zukowski, S.Heman, N.Nes, P.Boncz, VLDB 2007

  All these and more available at http://homepages.cwi.nl/~marcin/

60

X100, MIMUW, 2009-05-28 61

The End

Thank you!

Questions?

(If too shy to ask now, write to marcin@cwi.nl)

