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Polska trudna język 

  Prezentacja po polsku 

  Eksperyment  

  Przepraszam za pomyłki 

  Slajdy po angielsku 

2 



X100, MIMUW, 2009-05-28 3 

Application focus 

  Two major DBMS application types 

  Transaction processing – not today  

  Data-analysis applications  
  Data warehousing, reporting etc. 

  Scientific data, information retrieval 

  A lot of technical content… wake up! 
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Outline 

  Traditional database performance 

  Improvements in MonetDB 

  X100 

  Query execution 

  Storage 
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Motivation 

TPC-H benchmark (1GB), Query 1 

  Selects 98% of a fact table (6M rows), performs 
simple aggregations 

  Performance: 

  C program:  ? 

  MySQL:  26.2s  

  DBMS “X”:  28.1s 
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Motivation 

TPC-H benchmark (1GB), Query 1 

  Selects 98% of a fact table (6M rows), performs 
simple aggregations 

  Performance: 

  C program:   0.2s  

  MySQL:  26.2s  

  DBMS “X”:  28.1s 
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Database performance 

  Why so slow? 

  Inefficient data storage format 

  Inefficient query processing model 
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N-ary storage model (NSM) 

  Attributes in a record 

Joe   101 27 Black 

Edward 103 21 Scissorhand 
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Real-life NSM implementation 

  Pages on disk – example: 

27 Black Joe  

21 Scissorhand Edward   

101 

103 

pointers to tuples 

Var-width attribute pointers 
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NSM problems 

  Always read all the attributes 
  Poor bandwidth and buffer-space use  

  Terrible on disk 

  Bad in memory 

  Complex tuple structure and navigation 

  e.g. compressing out null fields 
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Column stores to the rescue! 

  Store attributes separately 

  Read only attributes used by a query 
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“Traditional” column stores 

  Data path 

  Read columns from disk 

  Convert into NSM 

  Use NSM-based processing 

  Examples: Sybase IQ, Vertica 

  Not enough! 

  Only I/O problem addressed 
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How databases run a query  

Query 

SELECT  
 name,  
 salary*.19 AS tax 

FROM   
 employee 

WHERE  
 age > 25 
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Database operators 

Tuple-at-a-time iterator 
interface: 
-  open() 
-  next(): tuple 
- close() 

next() is called: 
-  for each operator 
- for each tuple 

Complex code repeated 
over and over 
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Primitive functions 

Provide data-specific 
computational functionality 

Called once for every 
operation on every tuple. 

Even worse with complex 
tuple representation 

Perform one operation 
(e.g. addition) in one call 
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DBMS performance - IPT 

  Lots of repeated, unnecessary code 

  Operator logic 

  Function calls 

  Attribute access 

  Most instructions interpreting a query  

  Very few instructions processing actual data! 

  High instructions-per-tuple (IPT) factor 
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Modern CPUs 

  New CPU features over the last 20 years 

  RAM too slow - instruction and data cache 

  Complex CPU pipelines – branch sensitivity 

  Superscalar features – multiple instructions at once 

  SIMD instructions (SSE) 

  Great for e.g. multimedia processing… 

  … but bad for database code!  
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DBMS performance - CPI 

  CPU-unfriendly code 

  Complex code: function calls, branches 

  Poor use of CPU cache (both data and instructions) 

  Processing one value at a time 

  Compilers can’t help much  

  High cycles-per-instruction (CPI) factor 
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DBMS performance 

  Performance factors: 

  High instructions-per-tuple 

  High cycles-per-instruction 

  Very high cycles-per-tuple (CPT) 

  Others can do better 

  Scientific computing, mulitmeda, … 

  How can we? 
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MonetDB 

  MonetDB – 1993-now, developed at CWI  

  In-memory column store 

  Focused on computational efficiency 

  Predecessor of X100 
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MonetDB: a column store 

  “save disk I/O when scan-intensive queries    

need a few columns” 
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MonetDB: a column store 

  “save disk I/O when scan-intensive queries    

need a few columns” 

  “reduce interpretation overheads to improve 

computational efficiency” 
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MonetDB in action 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  
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MonetDB in action 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  



X100, MIMUW, 2009-05-28 25 

MonetDB in action 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  

Simple, hard-
coded operators 

int  
select_gt_float(  oid* res,  
     float* column,  

  float val, int n) 
{ 
    for(int j=0,i=0; i<n; i++) 
        if (column[i] >val) res[j++] = i; 
    return j; 
}  

CPU Efficiency depends on “nice” code 
-  no function calls 
-  few dependencies (control,data) 
-  compiler support  

Compilers love simple loops over arrays 
-  loop unrolling, loop pipelining 
-  automatic SIMD 
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MonetDB: a column store 

  “save disk I/O when scan-intensive queries    

need a few columns” 

  “reduce interpretation overheads to improve 

computational efficiency” 
  Hard-coded, specialized operators (thousands!) 

  No function calls 

  Array-based processing 
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MonetDB problem 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  

MATERIALIZED 
intermediate 

results 
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Materialization problem 

  Extra main-memory bandwidth  

  Performance is sub-optimal… 

  … but still faster than anything else (5 years ago ) 

  Reduces scalability 

  Can’t afford writing to disk 

  Only effective for limited data sizes and not all 
query types 
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MonetDB: a Faustian Pact 

  You want efficiency 

  Simple hard-coded operators 

  I take scalability 

  Result materialization  
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MonetDB: a Faustian Pact 

  You want efficiency 

  Simple hard-coded operators 

  I take scalability 

  Result materialization  

  C program:  0.2s 

  MonetDB:  3.7s 

  MySQL:   26.2s 

  DBMS “X”:  28.1s 
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MonetDB: a Faustian Pact 

  You want efficiency 

  Simple hard-coded operators 

  I take scalability 

  Result materialization  

  C program:  0.2s 

  MonetDB:  3.7s 

  MySQL:   26.2s 

  DBMS “X”:  28.1s 

Supports SQL and XQuery 

Open-source download: 
monetdb.cwi.nl 
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X100 

  My PhD thesis 

  Motivation:  

  let’s fix MonetDB scalability problem…  

  … and improve the performance on the way  

  Core ideas: 

  New execution model 

  High performance column storage 
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Typical Relational DBMS Engine  

Query 

SELECT  
 name,  
 salary*.19 AS tax 

FROM   
 employee 

WHERE  
 age > 25 

Iterator model is nice 

Tuple-based 
processing is bad 
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X100: “Vectors”  
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X100: “Vectors” 

Vector contains data 
of multiple tuples 
(~100-1000) 

All operations 
consume and 
produce entire 
vectors 

Effect: much less 
operator.next() and 
primitive calls. 
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Vectors  
Column slices as  

 unary arrays 

Not because: 
Columns are better for storage  
than rows 
(though we still think it often is)  

But because: 
-  simple and efficient 
- SIMD friendly layout 
- Assumed cache-resident 
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Vectorized Primitives  
int  
select_lt_int_col_int_val ( 
    int *res, 
    int *col,  
    int val, int n) 
{ 
    for(int j=i=0; i<n; i++) 
            if (col[i] < val) res[j++] = i; 
    return j; 
}  

Most primitives 
take just 0.5 (!) to 
10 cycles per tuple 

10-100+ times 
faster than 
tuple-at-a-time 



X100, MIMUW, 2009-05-28 38 

X100 

  Both efficiency… 

  Vectorized primitives 

  … and scalability 

  Pipelined query evaluation  

  C program:  0.2s 

  X100:   0.6s 

  MonetDB:  3.7s 

  MySQL:   26.2s  

  DBMS “X”:  28.1s 
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Varying the Vector size 

Less and less 
operator.next() and  

primitive function calls 
(“interpretation overhead”) 
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Varying the Vector size 

Vectors start to exceed the 
CPU cache, causing 

additional memory traffic 
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Why is X100 so fast? 
  Reduced interpretation overhead 

  100+ times fewer function calls  

  Good CPU cache use 
  High locality in the primitives 

  Cache-conscious algorithms 

  No Tuple Navigation 
  Primitives only see arrays 

  Vectorization allows algorithmic optimization 
  CPU and compiler-friendly function bodies 

  Multiple work units, loop-pipelining, SIMD… 
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Feeding the Beast 

X100 uses ~100 cycles per tuple for TPC-H Q1 

  Q1 has ~30 bytes of used columns per tuple 

  3GHz CPU core 

   eats 900MB/s   

No problem for RAM 

But disk-based data?   
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Using Disk in the 21th century 

Poor random disk access needs 
to be compensated with more and 

more disk heads. 
(tens, hundreds… thousands!)  

Focus on scanning!  

Databases traditionally depend 
on secondary indices resulting 

in many random disk accesses 
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Feeding the Beast (1) 

Two ideas pursued: 

  Lightweight compression to enhance disk bandwidth 

  Maximizing disk   

   scan sharing in  

   concurrent queries. 
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Compression to improve I/O bandwidth 

  0.9GB/s query consumption 

  1/3 CPU for decompression  1.8GB/s needed 

 new lightweight compression schemes  
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Key Ingredients 

  Compress relations on a per-column basis 
  Easy to exploit redundancy 

  Keep data compressed in main-memory 
  More data can be buffered 

  Decompress vector at a time  
  Minimize main-memory overhead 

  Use light-weight, CPU-efficient algorithms 
  Exploit processing power of modern CPUs 
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CPU-friendly decompression 

  Tuples classified into “hits” and “misses” 
void decompress(size_t n, char* in, int *out, int *misses,  int first_miss) 
    for (i =0; i < n; i++)              // decode all values 
        out[i] = DECODE( in[i] );     // including misses 
    for (i = first_miss, j = 0; i < n; i += in[i])   // patch misses 
        out[i] = misses[j++];         // using exception table 

47 
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TPC-H 100 GB 

TPC-H 

query 

X100 on 1 CPU DB2 – 8 CPUs 

Compression 
ratio 

4 disks 12 disks 142 disks 

Speedup Time (s) Speedup Time (s) Time (s) 

01 4.33 4.41 69.6 1.29 50.9 111.9 

03 3.04 3.10 11.3 1.48 6.0 15.1 

04 8.15 7.58 2.4 2.67 1.8 12.5 

05 3.81 3.55 15.3 1.06 16.2 84.0 

06 4.39 4.50 10.7 2.35 4.6 17.1 

07 1.71 1.66 72.0 0.84 40.8 86.5 

Linear speedup 
with slow disks 

Decent improvement 
with fast disks 

Competes with DB2 using 
~10x less resources 
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Feeding the Beast (2) 

Two ideas pursued: 

  Lightweight compression to enhance disk bandwidth 

  Maximizing disk 

   scan sharing in  

   concurrent queries. 
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Concurrent scans 

  Multiple queries 
scanning the same table 
  Different start times 

  Different scan ranges 

  Compete for disk access 
and buffer space 

  FCFS request 
scheduling: poor latency 
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“Normal” scans in real life 
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Shared scans 

  Observation: queries 
often do not need data in 
a sequential order 

  Idea: make queries 
“share” the scanning 
process 

  Two existing types:  
  Attach 

  Elevator 
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“Attach” in real life 
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“Elevator” in real life 
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Existing shared scans 

  Benefits 

  Less I/O operations 

  Better data reuse 

  Problems 

  Sharing decisions static (when a query starts) 

  Misses opportunities in a dynamic environment 

  Not sensitive to different query types 
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“Relevance” scans 

  Core ideas 

  Dynamically adapt to the current situation 

  Allow fully arbitrary data order 

  Goals: 

  Maximize data sharing 

  Optimize latency and throughput 

  Work for different types of queries 
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“Relevance” in real life 
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Results 
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Conclusions 
  Presented X100 

  A new database kernel 

  Uses block-oriented iterator model (vectorization)  

  works amazingly well 

  So fast, must reduce hunger for hard disk bandwidth 
  Column storage specialized in sequential access 

  + Lightweight compression schemes (give ~~ factor 3) 

  + Cooperative bandwidth sharing (gives ~~ factor 2) 

  Good performance results 
  Fastest raw 100GB TPC-H performance around (** not fair)  

  Beats IR systems on Terabyte TREC 
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The End 

Thank you! 

Questions? 

(If too shy to ask now, write to marcin@cwi.nl) 


