
X100
Architektura nowoczesnego

systemu bazodanowego

Marcin Żukowski
(marcin@cwi.nl)

MIMUW, 2009-05-28

X100, MIMUW, 2009-05-28

Polska trudna język

  Prezentacja po polsku

  Eksperyment 

  Przepraszam za pomyłki

  Slajdy po angielsku

2

X100, MIMUW, 2009-05-28 3

Application focus

  Two major DBMS application types

  Transaction processing – not today 

  Data-analysis applications
  Data warehousing, reporting etc.

  Scientific data, information retrieval

  A lot of technical content… wake up!

X100, MIMUW, 2009-05-28 4

Outline

  Traditional database performance

  Improvements in MonetDB

  X100

  Query execution

  Storage

X100, MIMUW, 2009-05-28 5

Motivation

TPC-H benchmark (1GB), Query 1

  Selects 98% of a fact table (6M rows), performs
simple aggregations

  Performance:

  C program: ?

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 6

Motivation

TPC-H benchmark (1GB), Query 1

  Selects 98% of a fact table (6M rows), performs
simple aggregations

  Performance:

  C program: 0.2s

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 7

Database performance

  Why so slow?

  Inefficient data storage format

  Inefficient query processing model

X100, MIMUW, 2009-05-28 8

N-ary storage model (NSM)

  Attributes in a record

Joe 101 27 Black

Edward 103 21 Scissorhand

X100, MIMUW, 2009-05-28 9

Real-life NSM implementation

  Pages on disk – example:

27 Black Joe

21 Scissorhand Edward

101

103

pointers to tuples

Var-width attribute pointers

X100, MIMUW, 2009-05-28 10

NSM problems

  Always read all the attributes
  Poor bandwidth and buffer-space use

  Terrible on disk

  Bad in memory

  Complex tuple structure and navigation

  e.g. compressing out null fields

X100, MIMUW, 2009-05-28 11

Column stores to the rescue!

  Store attributes separately

  Read only attributes used by a query

X100, MIMUW, 2009-05-28 12

“Traditional” column stores

  Data path

  Read columns from disk

  Convert into NSM

  Use NSM-based processing

  Examples: Sybase IQ, Vertica

  Not enough!

  Only I/O problem addressed

X100, MIMUW, 2009-05-28 13

How databases run a query

Query

SELECT
 name,
 salary*.19 AS tax

FROM
 employee

WHERE
 age > 25

X100, MIMUW, 2009-05-28 14

Database operators

Tuple-at-a-time iterator
interface:
-  open()
-  next(): tuple
- close()

next() is called:
-  for each operator
- for each tuple

Complex code repeated
over and over

X100, MIMUW, 2009-05-28 15

Primitive functions

Provide data-specific
computational functionality

Called once for every
operation on every tuple.

Even worse with complex
tuple representation

Perform one operation
(e.g. addition) in one call

X100, MIMUW, 2009-05-28 16

DBMS performance - IPT

  Lots of repeated, unnecessary code

  Operator logic

  Function calls

  Attribute access

  Most instructions interpreting a query

  Very few instructions processing actual data!

  High instructions-per-tuple (IPT) factor

X100, MIMUW, 2009-05-28 17

Modern CPUs

  New CPU features over the last 20 years

  RAM too slow - instruction and data cache

  Complex CPU pipelines – branch sensitivity

  Superscalar features – multiple instructions at once

  SIMD instructions (SSE)

  Great for e.g. multimedia processing…

  … but bad for database code!

X100, MIMUW, 2009-05-28 18

DBMS performance - CPI

  CPU-unfriendly code

  Complex code: function calls, branches

  Poor use of CPU cache (both data and instructions)

  Processing one value at a time

  Compilers can’t help much 

  High cycles-per-instruction (CPI) factor

X100, MIMUW, 2009-05-28 19

DBMS performance

  Performance factors:

  High instructions-per-tuple

  High cycles-per-instruction

  Very high cycles-per-tuple (CPT)

  Others can do better

  Scientific computing, mulitmeda, …

  How can we?

X100, MIMUW, 2009-05-28 20

MonetDB

  MonetDB – 1993-now, developed at CWI

  In-memory column store

  Focused on computational efficiency

  Predecessor of X100

X100, MIMUW, 2009-05-28 21

MonetDB: a column store

  “save disk I/O when scan-intensive queries

need a few columns”

X100, MIMUW, 2009-05-28 22

MonetDB: a column store

  “save disk I/O when scan-intensive queries

need a few columns”

  “reduce interpretation overheads to improve

computational efficiency”

X100, MIMUW, 2009-05-28 23

MonetDB in action
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

X100, MIMUW, 2009-05-28 24

MonetDB in action
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

X100, MIMUW, 2009-05-28 25

MonetDB in action
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

Simple, hard-
coded operators

int
select_gt_float(oid* res,
 float* column,

 float val, int n)
{
 for(int j=0,i=0; i<n; i++)
 if (column[i] >val) res[j++] = i;
 return j;
}

CPU Efficiency depends on “nice” code
-  no function calls
-  few dependencies (control,data)
-  compiler support

Compilers love simple loops over arrays
-  loop unrolling, loop pipelining
-  automatic SIMD

X100, MIMUW, 2009-05-28 26

MonetDB: a column store

  “save disk I/O when scan-intensive queries

need a few columns”

  “reduce interpretation overheads to improve

computational efficiency”
  Hard-coded, specialized operators (thousands!)

  No function calls

  Array-based processing

X100, MIMUW, 2009-05-28 27

MonetDB problem
SELECT id, name, (age-30)*50 as bonus
FROM people
WHERE age > 30

MATERIALIZED
intermediate

results

X100, MIMUW, 2009-05-28 28

Materialization problem

  Extra main-memory bandwidth

  Performance is sub-optimal…

  … but still faster than anything else (5 years ago )

  Reduces scalability

  Can’t afford writing to disk

  Only effective for limited data sizes and not all
query types

X100, MIMUW, 2009-05-28 29

MonetDB: a Faustian Pact

  You want efficiency

  Simple hard-coded operators

  I take scalability

  Result materialization

X100, MIMUW, 2009-05-28 30

MonetDB: a Faustian Pact

  You want efficiency

  Simple hard-coded operators

  I take scalability

  Result materialization

  C program: 0.2s

  MonetDB: 3.7s

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 31

MonetDB: a Faustian Pact

  You want efficiency

  Simple hard-coded operators

  I take scalability

  Result materialization

  C program: 0.2s

  MonetDB: 3.7s

  MySQL: 26.2s

  DBMS “X”: 28.1s

Supports SQL and XQuery

Open-source download:
monetdb.cwi.nl

X100, MIMUW, 2009-05-28 32

X100

  My PhD thesis

  Motivation:

  let’s fix MonetDB scalability problem…

  … and improve the performance on the way 

  Core ideas:

  New execution model

  High performance column storage

X100, MIMUW, 2009-05-28 33

Typical Relational DBMS Engine

Query

SELECT
 name,
 salary*.19 AS tax

FROM
 employee

WHERE
 age > 25

Iterator model is nice

Tuple-based
processing is bad

X100, MIMUW, 2009-05-28 34

X100: “Vectors”

X100, MIMUW, 2009-05-28 35

X100: “Vectors”

Vector contains data
of multiple tuples
(~100-1000)

All operations
consume and
produce entire
vectors

Effect: much less
operator.next() and
primitive calls.

X100, MIMUW, 2009-05-28 36

Vectors
Column slices as

 unary arrays

Not because:
Columns are better for storage
than rows
(though we still think it often is)

But because:
-  simple and efficient
- SIMD friendly layout
- Assumed cache-resident

X100, MIMUW, 2009-05-28 37

Vectorized Primitives
int
select_lt_int_col_int_val (
 int *res,
 int *col,
 int val, int n)
{
 for(int j=i=0; i<n; i++)
 if (col[i] < val) res[j++] = i;
 return j;
}

Most primitives
take just 0.5 (!) to
10 cycles per tuple

10-100+ times
faster than
tuple-at-a-time

X100, MIMUW, 2009-05-28 38

X100

  Both efficiency…

  Vectorized primitives

  … and scalability

  Pipelined query evaluation

  C program: 0.2s

  X100: 0.6s

  MonetDB: 3.7s

  MySQL: 26.2s

  DBMS “X”: 28.1s

X100, MIMUW, 2009-05-28 39

Varying the Vector size

Less and less
operator.next() and

primitive function calls
(“interpretation overhead”)

X100, MIMUW, 2009-05-28 40

Varying the Vector size

Vectors start to exceed the
CPU cache, causing

additional memory traffic

X100, MIMUW, 2009-05-28 41

Why is X100 so fast?
  Reduced interpretation overhead

  100+ times fewer function calls

  Good CPU cache use
  High locality in the primitives

  Cache-conscious algorithms

  No Tuple Navigation
  Primitives only see arrays

  Vectorization allows algorithmic optimization
  CPU and compiler-friendly function bodies

  Multiple work units, loop-pipelining, SIMD…

X100, MIMUW, 2009-05-28 42

Feeding the Beast

X100 uses ~100 cycles per tuple for TPC-H Q1

  Q1 has ~30 bytes of used columns per tuple

  3GHz CPU core

 eats 900MB/s

No problem for RAM

But disk-based data?

X100, MIMUW, 2009-05-28 43

Using Disk in the 21th century

Poor random disk access needs
to be compensated with more and

more disk heads.
(tens, hundreds… thousands!)

Focus on scanning!

Databases traditionally depend
on secondary indices resulting

in many random disk accesses

X100, MIMUW, 2009-05-28 44

Feeding the Beast (1)

Two ideas pursued:

  Lightweight compression to enhance disk bandwidth

  Maximizing disk

 scan sharing in

 concurrent queries.

X100, MIMUW, 2009-05-28 45

Compression to improve I/O bandwidth

  0.9GB/s query consumption

  1/3 CPU for decompression  1.8GB/s needed

 new lightweight compression schemes

X100, MIMUW, 2009-05-28 46

Key Ingredients

  Compress relations on a per-column basis
  Easy to exploit redundancy

  Keep data compressed in main-memory
  More data can be buffered

  Decompress vector at a time
  Minimize main-memory overhead

  Use light-weight, CPU-efficient algorithms
  Exploit processing power of modern CPUs

X100, MIMUW, 2009-05-28

CPU-friendly decompression

  Tuples classified into “hits” and “misses”
void decompress(size_t n, char* in, int *out, int *misses, int first_miss)
 for (i =0; i < n; i++) // decode all values
 out[i] = DECODE(in[i]); // including misses
 for (i = first_miss, j = 0; i < n; i += in[i]) // patch misses
 out[i] = misses[j++]; // using exception table

47

X100, MIMUW, 2009-05-28 48

TPC-H 100 GB

TPC-H

query

X100 on 1 CPU DB2 – 8 CPUs

Compression
ratio

4 disks 12 disks 142 disks

Speedup Time (s) Speedup Time (s) Time (s)

01 4.33 4.41 69.6 1.29 50.9 111.9

03 3.04 3.10 11.3 1.48 6.0 15.1

04 8.15 7.58 2.4 2.67 1.8 12.5

05 3.81 3.55 15.3 1.06 16.2 84.0

06 4.39 4.50 10.7 2.35 4.6 17.1

07 1.71 1.66 72.0 0.84 40.8 86.5

Linear speedup
with slow disks

Decent improvement
with fast disks

Competes with DB2 using
~10x less resources

X100, MIMUW, 2009-05-28 49

Feeding the Beast (2)

Two ideas pursued:

  Lightweight compression to enhance disk bandwidth

  Maximizing disk

 scan sharing in

 concurrent queries.

X100, MIMUW, 2009-05-28 50

Concurrent scans

  Multiple queries
scanning the same table
  Different start times

  Different scan ranges

  Compete for disk access
and buffer space

  FCFS request
scheduling: poor latency

X100, MIMUW, 2009-05-28 51

“Normal” scans in real life

X100, MIMUW, 2009-05-28 52

Shared scans

  Observation: queries
often do not need data in
a sequential order

  Idea: make queries
“share” the scanning
process

  Two existing types:
  Attach

  Elevator

X100, MIMUW, 2009-05-28 53

“Attach” in real life

X100, MIMUW, 2009-05-28 54

“Elevator” in real life

X100, MIMUW, 2009-05-28 55

Existing shared scans

  Benefits

  Less I/O operations

  Better data reuse

  Problems

  Sharing decisions static (when a query starts)

  Misses opportunities in a dynamic environment

  Not sensitive to different query types

X100, MIMUW, 2009-05-28 56

“Relevance” scans

  Core ideas

  Dynamically adapt to the current situation

  Allow fully arbitrary data order

  Goals:

  Maximize data sharing

  Optimize latency and throughput

  Work for different types of queries

X100, MIMUW, 2009-05-28 57

“Relevance” in real life

X100, MIMUW, 2009-05-28 58

Results

X100, MIMUW, 2009-05-28 59

Conclusions
  Presented X100

  A new database kernel

  Uses block-oriented iterator model (vectorization)

  works amazingly well

  So fast, must reduce hunger for hard disk bandwidth
  Column storage specialized in sequential access

  + Lightweight compression schemes (give ~~ factor 3)

  + Cooperative bandwidth sharing (gives ~~ factor 2)

  Good performance results
  Fastest raw 100GB TPC-H performance around (** not fair)

  Beats IR systems on Terabyte TREC

X100, MIMUW, 2009-05-28

Literature
  Monet:

  “Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications”
P.Boncz, PhD thesis 2002

http://old-www.cwi.nl/htbin/ins1/publications?request=intabstract&key=Bo:DISS:02

  X100:
  “MonetDB/X100: A DBMS In The CPU Cache”

M.Zukowski, P.Boncz, N.Nes, S.Heman, DeBull 2005

  “MonetDB/X100: Hyper-Pipelining Query Execution”

P.Boncz, M.Zukowski, N.Nes, CIDR 2005

  “Super-Scalar RAM-CPU Cache Compression”

M.Zukowski, S.Heman, N.Nes, P.Boncz, ICDE 2006

  “Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS”

M.Zukowski, S.Heman, N.Nes, P.Boncz, VLDB 2007

  All these and more available at http://homepages.cwi.nl/~marcin/

60

X100, MIMUW, 2009-05-28 61

The End

Thank you!

Questions?

(If too shy to ask now, write to marcin@cwi.nl)

