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Polska trudna język 

  Prezentacja po polsku 

  Eksperyment  

  Przepraszam za pomyłki 

  Slajdy po angielsku 
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Application focus 

  Two major DBMS application types 

  Transaction processing – not today  

  Data-analysis applications  
  Data warehousing, reporting etc. 

  Scientific data, information retrieval 

  A lot of technical content… wake up! 
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Outline 

  Traditional database performance 

  Improvements in MonetDB 

  X100 

  Query execution 

  Storage 
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Motivation 

TPC-H benchmark (1GB), Query 1 

  Selects 98% of a fact table (6M rows), performs 
simple aggregations 

  Performance: 

  C program:  ? 

  MySQL:  26.2s  

  DBMS “X”:  28.1s 
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Motivation 

TPC-H benchmark (1GB), Query 1 

  Selects 98% of a fact table (6M rows), performs 
simple aggregations 

  Performance: 

  C program:   0.2s  

  MySQL:  26.2s  

  DBMS “X”:  28.1s 
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Database performance 

  Why so slow? 

  Inefficient data storage format 

  Inefficient query processing model 
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N-ary storage model (NSM) 

  Attributes in a record 

Joe   101 27 Black 

Edward 103 21 Scissorhand 
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Real-life NSM implementation 

  Pages on disk – example: 

27 Black Joe  

21 Scissorhand Edward   

101 

103 

pointers to tuples 

Var-width attribute pointers 
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NSM problems 

  Always read all the attributes 
  Poor bandwidth and buffer-space use  

  Terrible on disk 

  Bad in memory 

  Complex tuple structure and navigation 

  e.g. compressing out null fields 
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Column stores to the rescue! 

  Store attributes separately 

  Read only attributes used by a query 
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“Traditional” column stores 

  Data path 

  Read columns from disk 

  Convert into NSM 

  Use NSM-based processing 

  Examples: Sybase IQ, Vertica 

  Not enough! 

  Only I/O problem addressed 
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How databases run a query  

Query 

SELECT  
 name,  
 salary*.19 AS tax 

FROM   
 employee 

WHERE  
 age > 25 
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Database operators 

Tuple-at-a-time iterator 
interface: 
-  open() 
-  next(): tuple 
- close() 

next() is called: 
-  for each operator 
- for each tuple 

Complex code repeated 
over and over 
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Primitive functions 

Provide data-specific 
computational functionality 

Called once for every 
operation on every tuple. 

Even worse with complex 
tuple representation 

Perform one operation 
(e.g. addition) in one call 
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DBMS performance - IPT 

  Lots of repeated, unnecessary code 

  Operator logic 

  Function calls 

  Attribute access 

  Most instructions interpreting a query  

  Very few instructions processing actual data! 

  High instructions-per-tuple (IPT) factor 
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Modern CPUs 

  New CPU features over the last 20 years 

  RAM too slow - instruction and data cache 

  Complex CPU pipelines – branch sensitivity 

  Superscalar features – multiple instructions at once 

  SIMD instructions (SSE) 

  Great for e.g. multimedia processing… 

  … but bad for database code!  
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DBMS performance - CPI 

  CPU-unfriendly code 

  Complex code: function calls, branches 

  Poor use of CPU cache (both data and instructions) 

  Processing one value at a time 

  Compilers can’t help much  

  High cycles-per-instruction (CPI) factor 
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DBMS performance 

  Performance factors: 

  High instructions-per-tuple 

  High cycles-per-instruction 

  Very high cycles-per-tuple (CPT) 

  Others can do better 

  Scientific computing, mulitmeda, … 

  How can we? 
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MonetDB 

  MonetDB – 1993-now, developed at CWI  

  In-memory column store 

  Focused on computational efficiency 

  Predecessor of X100 
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MonetDB: a column store 

  “save disk I/O when scan-intensive queries    

need a few columns” 
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MonetDB: a column store 

  “save disk I/O when scan-intensive queries    

need a few columns” 

  “reduce interpretation overheads to improve 

computational efficiency” 
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MonetDB in action 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  
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MonetDB in action 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  
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MonetDB in action 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  

Simple, hard-
coded operators 

int  
select_gt_float(  oid* res,  
     float* column,  

  float val, int n) 
{ 
    for(int j=0,i=0; i<n; i++) 
        if (column[i] >val) res[j++] = i; 
    return j; 
}  

CPU Efficiency depends on “nice” code 
-  no function calls 
-  few dependencies (control,data) 
-  compiler support  

Compilers love simple loops over arrays 
-  loop unrolling, loop pipelining 
-  automatic SIMD 
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MonetDB: a column store 

  “save disk I/O when scan-intensive queries    

need a few columns” 

  “reduce interpretation overheads to improve 

computational efficiency” 
  Hard-coded, specialized operators (thousands!) 

  No function calls 

  Array-based processing 
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MonetDB problem 
SELECT  id, name, (age-30)*50 as bonus 
FROM  people 
WHERE  age > 30  

MATERIALIZED 
intermediate 

results 
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Materialization problem 

  Extra main-memory bandwidth  

  Performance is sub-optimal… 

  … but still faster than anything else (5 years ago ) 

  Reduces scalability 

  Can’t afford writing to disk 

  Only effective for limited data sizes and not all 
query types 



X100, MIMUW, 2009-05-28 29 

MonetDB: a Faustian Pact 

  You want efficiency 

  Simple hard-coded operators 

  I take scalability 

  Result materialization  
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MonetDB: a Faustian Pact 

  You want efficiency 

  Simple hard-coded operators 

  I take scalability 

  Result materialization  

  C program:  0.2s 

  MonetDB:  3.7s 

  MySQL:   26.2s 

  DBMS “X”:  28.1s 
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MonetDB: a Faustian Pact 

  You want efficiency 

  Simple hard-coded operators 

  I take scalability 

  Result materialization  

  C program:  0.2s 

  MonetDB:  3.7s 

  MySQL:   26.2s 

  DBMS “X”:  28.1s 

Supports SQL and XQuery 

Open-source download: 
monetdb.cwi.nl 
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X100 

  My PhD thesis 

  Motivation:  

  let’s fix MonetDB scalability problem…  

  … and improve the performance on the way  

  Core ideas: 

  New execution model 

  High performance column storage 
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Typical Relational DBMS Engine  

Query 

SELECT  
 name,  
 salary*.19 AS tax 

FROM   
 employee 

WHERE  
 age > 25 

Iterator model is nice 

Tuple-based 
processing is bad 
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X100: “Vectors”  
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X100: “Vectors” 

Vector contains data 
of multiple tuples 
(~100-1000) 

All operations 
consume and 
produce entire 
vectors 

Effect: much less 
operator.next() and 
primitive calls. 
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Vectors  
Column slices as  

 unary arrays 

Not because: 
Columns are better for storage  
than rows 
(though we still think it often is)  

But because: 
-  simple and efficient 
- SIMD friendly layout 
- Assumed cache-resident 
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Vectorized Primitives  
int  
select_lt_int_col_int_val ( 
    int *res, 
    int *col,  
    int val, int n) 
{ 
    for(int j=i=0; i<n; i++) 
            if (col[i] < val) res[j++] = i; 
    return j; 
}  

Most primitives 
take just 0.5 (!) to 
10 cycles per tuple 

10-100+ times 
faster than 
tuple-at-a-time 
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X100 

  Both efficiency… 

  Vectorized primitives 

  … and scalability 

  Pipelined query evaluation  

  C program:  0.2s 

  X100:   0.6s 

  MonetDB:  3.7s 

  MySQL:   26.2s  

  DBMS “X”:  28.1s 
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Varying the Vector size 

Less and less 
operator.next() and  

primitive function calls 
(“interpretation overhead”) 
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Varying the Vector size 

Vectors start to exceed the 
CPU cache, causing 

additional memory traffic 
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Why is X100 so fast? 
  Reduced interpretation overhead 

  100+ times fewer function calls  

  Good CPU cache use 
  High locality in the primitives 

  Cache-conscious algorithms 

  No Tuple Navigation 
  Primitives only see arrays 

  Vectorization allows algorithmic optimization 
  CPU and compiler-friendly function bodies 

  Multiple work units, loop-pipelining, SIMD… 
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Feeding the Beast 

X100 uses ~100 cycles per tuple for TPC-H Q1 

  Q1 has ~30 bytes of used columns per tuple 

  3GHz CPU core 

   eats 900MB/s   

No problem for RAM 

But disk-based data?   
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Using Disk in the 21th century 

Poor random disk access needs 
to be compensated with more and 

more disk heads. 
(tens, hundreds… thousands!)  

Focus on scanning!  

Databases traditionally depend 
on secondary indices resulting 

in many random disk accesses 
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Feeding the Beast (1) 

Two ideas pursued: 

  Lightweight compression to enhance disk bandwidth 

  Maximizing disk   

   scan sharing in  

   concurrent queries. 
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Compression to improve I/O bandwidth 

  0.9GB/s query consumption 

  1/3 CPU for decompression  1.8GB/s needed 

 new lightweight compression schemes  
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Key Ingredients 

  Compress relations on a per-column basis 
  Easy to exploit redundancy 

  Keep data compressed in main-memory 
  More data can be buffered 

  Decompress vector at a time  
  Minimize main-memory overhead 

  Use light-weight, CPU-efficient algorithms 
  Exploit processing power of modern CPUs 



X100, MIMUW, 2009-05-28 

CPU-friendly decompression 

  Tuples classified into “hits” and “misses” 
void decompress(size_t n, char* in, int *out, int *misses,  int first_miss) 
    for (i =0; i < n; i++)              // decode all values 
        out[i] = DECODE( in[i] );     // including misses 
    for (i = first_miss, j = 0; i < n; i += in[i])   // patch misses 
        out[i] = misses[j++];         // using exception table 

47 
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TPC-H 100 GB 

TPC-H 

query 

X100 on 1 CPU DB2 – 8 CPUs 

Compression 
ratio 

4 disks 12 disks 142 disks 

Speedup Time (s) Speedup Time (s) Time (s) 

01 4.33 4.41 69.6 1.29 50.9 111.9 

03 3.04 3.10 11.3 1.48 6.0 15.1 

04 8.15 7.58 2.4 2.67 1.8 12.5 

05 3.81 3.55 15.3 1.06 16.2 84.0 

06 4.39 4.50 10.7 2.35 4.6 17.1 

07 1.71 1.66 72.0 0.84 40.8 86.5 

Linear speedup 
with slow disks 

Decent improvement 
with fast disks 

Competes with DB2 using 
~10x less resources 



X100, MIMUW, 2009-05-28 49 

Feeding the Beast (2) 

Two ideas pursued: 

  Lightweight compression to enhance disk bandwidth 

  Maximizing disk 

   scan sharing in  

   concurrent queries. 
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Concurrent scans 

  Multiple queries 
scanning the same table 
  Different start times 

  Different scan ranges 

  Compete for disk access 
and buffer space 

  FCFS request 
scheduling: poor latency 
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“Normal” scans in real life 
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Shared scans 

  Observation: queries 
often do not need data in 
a sequential order 

  Idea: make queries 
“share” the scanning 
process 

  Two existing types:  
  Attach 

  Elevator 
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“Attach” in real life 
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“Elevator” in real life 
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Existing shared scans 

  Benefits 

  Less I/O operations 

  Better data reuse 

  Problems 

  Sharing decisions static (when a query starts) 

  Misses opportunities in a dynamic environment 

  Not sensitive to different query types 
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“Relevance” scans 

  Core ideas 

  Dynamically adapt to the current situation 

  Allow fully arbitrary data order 

  Goals: 

  Maximize data sharing 

  Optimize latency and throughput 

  Work for different types of queries 
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“Relevance” in real life 
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Results 
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Conclusions 
  Presented X100 

  A new database kernel 

  Uses block-oriented iterator model (vectorization)  

  works amazingly well 

  So fast, must reduce hunger for hard disk bandwidth 
  Column storage specialized in sequential access 

  + Lightweight compression schemes (give ~~ factor 3) 

  + Cooperative bandwidth sharing (gives ~~ factor 2) 

  Good performance results 
  Fastest raw 100GB TPC-H performance around (** not fair)  

  Beats IR systems on Terabyte TREC 
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The End 

Thank you! 

Questions? 

(If too shy to ask now, write to marcin@cwi.nl) 


